全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Diverse Text-to-3D Synthesis with Augmented Text Embedding NSTL国家科技图书文献中心

Uy Dieu Tran |  Minh Luu... -  《Computer Vision - ECCV 2024,Part LXXV》 -  European Conference on Computer Vision - 2025, - 217~235 - 共19页

摘要:Text-to-3D synthesis has recently emerged as a |  pretrained text-to-image models as guiding visual priors |  existing text-to-3D methods is that 3D models obtained |  the same text prompt. We propose to use augmented |  text prompts via textual inversion of reference
关键词: Text-to-3D |  3D computer vision |  Generative models

2. AttRel: Single Module Based Joint Entity and Relation Extraction with Attention Enhanced Text Embedding NSTL国家科技图书文献中心

Mengmeng Cui |  Chenbin Li... -  《Advanced Data Mining and Applications,Part V》 -  International Conference on Advanced Data Mining and Applications - 2025, - 328~343 - 共16页

摘要: text embedding vectors to improve the accuracy of |  joint extraction approach with attention enhanced text |  embedding, named AttRel. Specifically, a novel single | Information extraction is a vital subtask of |  knowledge graph constructions, where the joint extraction
关键词: Joint extraction |  Attention mechanisms |  Relation embedding

3. Interpretable prediction of drug-drug interactions via text embedding in biomedical literature NSTL国家科技图书文献中心

Jung S. |  Yoo S. -  《Computers in Biology and Medicine》 - 2025,185 - Article 109496~Article 109496 - 共11页

摘要: two components: drug embedding and DDI prediction | . The drug embedding module extracts representation |  sentence and sequence embedding methods. For sentence |  embedding, a pre-trained biomedical language model is used | . For sequence embedding, sentence embedding vectors
关键词: Attention mechanism |  Deep learning |  Drug embedding |  Drug expression |  Drug-drug interaction

4. Regulating the level of manipulation in text augmentation with systematic adjustment and advanced sentence embedding NSTL国家科技图书文献中心

Yuho,Cha |  Younghoon,Lee -  《Neural computing & applications》 - 2025,37(5) - 3473~3487 - 共15页

摘要:Text augmentation, a method for generating |  the most important issue in text augmentation; low |  proposes a systematically adjustable text augmentation |  sentence embedding methodology to achieve robust pseudo |  leverage combined sentence embedding, which incorporates
关键词: Text augmentation |  The level of manipulation |  Advanced sentence embedding |  Reliable pseudo-labels

5. PlanBERT: From Messy Zonal Plans to Informative Vector Embeddings NSTL国家科技图书文献中心

Henrik Bradland |  Morten Goodwin... -  《Artificial Intelligence XLI,Part I》 -  SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence - 2025, - 175~188 - 共14页

摘要:Text embedding models trained on vast web |  fine-tuning of embedding models. The approach builds |  (LLMs), and decorrelation of embedding features. The | -scraped corpus generalize well to daily language | . However, they often fall short when applied in
关键词: Text embedding |  Feature decorrelation |  Domain-adaptation

6. Integrating Embedding and LSHiForest in English Text Anomaly Detection NSTL国家科技图书文献中心

Qingquan Tong |  Rongju Yao -  《Concurrency and computation: practice and experience》 - 2025,37(3) - e8370.1~e8370.11 - 共11页

摘要: and sparse nature of text data, leading to | ) into the process of English text anomaly detection |  transforming English text into feature vectors, followed by |  across various text datasets. The effectiveness of this |  English text, particularly in scenarios involving large
关键词: anomaly detection |  English Dext |  LSHiForest |  outlier identification |  word embedding

7. Visually guided extraction of prevalent topics NSTL国家科技图书文献中心

Daniel Witschard |  Ilir Jusufi... -  《Information visualization》 - 2025,24(2) - 179~198 - 共20页

摘要:The sensemaking process of large sets of text |  large text corpora exist, many of them lack the |  two text corpora with very different content. We |  that our approach is suitable for text mining, that |  documents is highly challenging for tasks such as
关键词: Visual analytics |  text mining |  text embedding |  topic modeling |  similarity calculations

8. A Transformer-Based Tabular Approach to Detect Toxic Comments NSTL国家科技图书文献中心

Ghivvago Damas |  Rafael Torres Anchie...... -  《Intelligent Systems,Part IV》 -  Brazilian Conference on Intelligent Systems - 2025, - 18~30 - 共13页

摘要: text-embedding-3-large model. |  using modern embedding models as language embedders | In recent years, there has been a significant |  increase in toxic and hateful speech on social media |  platforms, becoming deeply entrenched in online
关键词: Toxic and hateful speech |  Deep learning |  FT-Transformer |  Embedding models |  Text classification

9. NLWM: A Robust, Efficient and High-Quality Watermark for Large Language Models NSTL国家科技图书文献中心

Mengting Song |  Ziyuan Li... -  《Web Information Systems Engineering - WISE 2024,Part V》 -  International Conference on Web Information Systems Engineering - 2025, - 320~335 - 共16页

摘要: challenge. Embedding watermarks during text generation is |  model-generated and human-created text a significant |  text quality and robustness, often struggling to |  achieve high accuracy over limited text sequences. Hence |  in text quality observed in current methods, we
关键词: Large language models |  Text watermarking |  N-bit watermark |  Watermark embedding and extraction |  BCH code

10. Retrieval-Augmented Generation Architecture Framework: Harnessing the Power of RAG NSTL国家科技图书文献中心

Richard Shan |  Tony Shan -  《Cognitive Computing - ICCC 2024》 -  International Conference on Cognitive Computing |  Services Conference Federation - 2025, - 88~104 - 共17页

摘要: databases, knowledge bases, text processing, frontend | This paper presents a comprehensive |  exploration of the Retrieval-Augmented Generation |  Architecture Framework (RAGAF), structured around seven key |  modules: Generator, Retriever, Orchestration, UI, Source
关键词: Retrieval-Augmented generation |  RAG architecture |  Framework |  Natural language processing |  Generative models |  Large language models |  Text embedding |  Vector database |  Multimodal data integration |  Evaluation metrics
检索条件text embedding
  • 检索词扩展

NSTL主题词

  • NSTL学科导航