全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. MLSA‑YOLO: a multilevel feature fusion and scale‑adaptive framework for small object detection NSTL国家科技图书文献中心

Jiayu Peng |  Kai Lv... -  《The Journal of Supercomputing》 - 2025,81(4) - 528.1~528.24 - 共24页

摘要: combined it with the proposed multi-level Feature |  feature fusion, hindering theaccurate representation of | . Furthermore,to address the challenges in feature fusion, we |  small objects, certain feature extractionparadigms |  multi-scale features. As a result, even high
关键词: YOLOv8 |  Small object detection |  Multi-level feature fusion |  Scaleadaptive

2. Facial expression recognition method based on multi-level feature fusion of high-resolution images NSTL国家科技图书文献中心

Li Wan |  Wenzhi Cheng -  《International Journal of Biometrics》 - 2025,17(1/2) - 57~72 - 共16页

摘要: recognition method based on multi-level feature fusion of |  processing. Secondly, extract multi-level features of |  facial images, and then fuse multi-level features |  decoupled data of facial expressions based on feature |  fusion results. Lastly, compare decoupled
关键词: Facial images |  Expression recognition |  High-resolution images |  Multi-level feature fusion

3. A multi-level feature fusion artificial neural network for classification of acoustic emission signals NSTL国家科技图书文献中心

Jinliang Huang |  Zhaolin Zhu... -  《Annals of the New York Academy of Sciences》 - 2025,1544(Feb.) - 223~241 - 共19页

摘要: in each branch, utilizing multi-level feature | In this paper, we introduce FUSION-ANN, a |  acoustic emission (AE) signal classification. FUSION-ANN | . These features are concatenated to form a new feature |  branches of FUSION-ANN. The network per-forms AE signal
关键词: artificial neural network |  classification of AE signals |  gammatone cepstral coefficient |  linear predictive coding |  Mel-frequency cepstral coefficients |  multi-level feature fusion

4. Few-shot fault diagnosis for machinery using multi-scale perception multi-level feature fusion image quadrant entropy NSTL国家科技图书文献中心

Zhenya Wang |  Pan Liang... -  《Advanced engineering informatics》 - 2025,63(Jan.) - 102972.1~102972.15 - 共15页

摘要: based on multi-scale perception multi-level feature |  multi-scale perception multi-level feature strategy is |  fusion image quadrant entropy (MPMFFIQE). The MPMFFIQE |  feature maps at various levels, maximizing the |  fusion image quadrant entropy technique is proposed to
关键词: Machinery |  Few-shot fault diagnosis |  Multi-scale perception multi-level feature fusion image quadrant entropy |  Support vector machine

5. Oracle Character Recognition Based on Attention Enhancement and Multi-level Feature Fusion NSTL国家科技图书文献中心

Zhiwang Han |  Nurbiya Yadikar... -  《Pattern Recognition,Part XXXI》 -  International Conference on Pattern Recognition - 2025, - 13~28 - 共16页

摘要: multi-level feature fusion by adaptively fusing the |  Enhancement (CFE) and Adaptive Multi-level Classifier Fusion |  Character Feature Enhancement Network (CFE-Net). The model |  consists of two key components: Character Feature | , thereby significantly enhancing high-level semantic
关键词: Oracle bone characters |  Character image recognition |  Attention mechanism |  Feature fusion

6. Multi-level feature fusion networks for smoke recognition in remote sensing imagery NSTL国家科技图书文献中心

Wang, Yupeng |  Wang, Yongli... -  《Neural Networks》 - 2025,184 - Article 107112~Article 107112 - 共13页

摘要: challenges, we propose the Multi-level Feature Fusion |  Bilinear Feature Fusion Module combines these enriched |  contrastive learning. MFFNet begins by extracting multi |  in smoke appearance. The Attention Feature |  Enhancement Module further refines these multi-scale
关键词: Remote sensing imagery |  Smoke recognition |  Feature fusion |  Contrastive learning |  Deep learning

7. Real-Time Text Detection with Multi-level Feature Fusion and Pixel Clustering NSTL国家科技图书文献中心

Lu Xu |  Zhufeng Jiang... -  《Pattern Recognition and Computer Vision,Part VII》 -  Chinese Conference on Pattern Recognition and Computer Vision - 2025, - 16~29 - 共14页

摘要:, named the Multi-Level Feature Fusion and Pixel |  context understanding and refines lower-level feature |  extensibility of pixel-level representations, but they face | . This method utilizes a lightweight feature extraction |  network, enhanced with specially designed Feature
关键词: Real-time text detection |  Feature enhancement |  Pixel clustering

8. MDFF-Net: Multi-level Dynamic Feature Fusion Network Combined with Deep Supervision Mechanism for Low-Light Image Enhancement NSTL国家科技图书文献中心

Xuxu Yang |  Yitao Liang... -  《Circuits, systems, and signal processing》 - 2025,44(2) - 1371~1399 - 共29页

摘要: Multi-level Dynamic Feature Fusion Module (MDFFM) to |  images, we develop a multilevel dynamic feature fusion |  specifically, we propose a multi-scale input encoder (MIE) in |  the feature extraction part, which aims to help the | , and minimize redundant features during the fusion
关键词: Multi-level feature fusion |  Dynamic fusion |  Low-light image enhancement |  Deep supervision

9. AMFT-YOLO: A Adaptive Multi-scale YOLO Algorithm with Multi-level Feature Fusion for Object Detection in UAV Scenes NSTL国家科技图书文献中心

Tiebiao Wang |  Zhenchao Cui... -  《MultiMedia Modeling,Part I》 -  International Conference on MultiMedia Modeling - 2025, - 72~85 - 共14页

摘要:, termed Adaptive Multi-Scale Feature Tower-YOLO (AMFT |  adaptive feature fusion. The effectiveness of our method |  classification tasks on the feature maps. This allows for the |  efficient utilization of limited feature information | . Secondly, we proposed the Bidirectional Multi-Scale Skip
关键词: Unmanned aerial vehicles |  Missing information |  Cluttered background |  Multi-Scale

10. TSAM: Multi-level Condition-Enhanced Image Inpainting via Progressive Feature Fusion and Decoding Mechanism NSTL国家科技图书文献中心

Xiongfei Jia |  Jiahao Meng... -  《Sixteenth International Conference on Graphics and Image Processing (ICGIP 2024)》 -  International Conference on Graphics and Image Processing - 2025, - 135391A.1~135391A.12 - 共12页

摘要: Multi-level Conditional Encoding (MCE) network in the |  Progressive Feature Fusion and Decoding (PFFD) network is | In recent years, deep learning-based image |  inpainting methods have made significant progress by |  incorporating structural priors. Due to the lack of
关键词: Image inpainting |  Twin-stream adversarial model |  Multi-level conditional encoding |  Progressive feature fusion and decoding
检索条件multi-level feature fusion
  • 检索词扩展

NSTL主题词

  • NSTL学科导航