全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Extracting Daily Aggregate Load Profiles from Monthly Consumption NSTL国家科技图书文献中心

Anmol Saraf |  Anupama Kowli -  《Energy Informatics,Part I》 -  Energy Informatics Academy Conference - 2025, - 332~348 - 共17页

摘要: how fine-grained smart meter data and monthly |  profile generation is proposed which only uses monthly | Consumer load profiling involves examining |  patterns of energy consumption using available data. With |  smart meter data available at (sub-)hourly intervals
关键词: Load profile generation |  Monthly electricity data |  Multi-layer perceptron |  Random forest |  XGboost

2. Fourier‐Series‐Based Application Modeling for Monthly Hydropower Generation NSTL国家科技图书文献中心

Zong-chang Yang -  《Computer applications in engineering education》 - 2025,33(2) - e70025.1~e70025.11 - 共11页

摘要: monthly hydropower generation, this study outlines an |  for evaluating monthly hydropower generation to |  and quasiperiodic signal identification for monthly | As one classical utility for timeseries |  analyzing, the Fourierseries (FS) technique has been
关键词: CBS |  engineering education |  FS |  hydropower

3. Filling ionospheric monthly medians missing data: a machine learning approach NSTL国家科技图书文献中心

Zossi, Bruno S. |  Medina, Franco D.... -  《Proceedings of the Royal Society,A.Mathematical, physical and engineering sciences》 - 2025,481(2308) - 共16页

摘要: missing values in the hourly monthly median foF2 | Ionospheric databases, like most time series |  of experimental parameters, contain missing data |  owing to either natural or technical reasons, limiting |  the statistical methods that can be used to analyse
关键词: machine learning |  ionosphere |  random forest |  gradient boosting |  missing data

4. Enhancing monthly precipitation forecasting by integrating multi-source data with machine learning models: a study in the Upper Blue Nile Basin NSTL国家科技图书文献中心

Mohammed, Juhar |  Mengiste, Yenesew... -  《Modeling Earth Systems and Environment》 - 2025,11(1) - 共16页

摘要: improve monthly precipitation forecasts by integrating |  monthly precipitation forecasts. All models exhibited |  enhance monthly precipitation forecasts, providing | This study developed a novel framework to |  multi-source data with machine-learning techniques
关键词: Multi-source data integration |  Machine learning models |  Monthly precipitation forecasting |  Global precipitation predictions |  Upper Blue Nile Basin

5. Phytoplankton Community Stability Across Eutrophic Gradients: Insights From Annual and Monthly Timescales NSTL国家科技图书文献中心

Wang, Liya |  Yang, Zhen... -  《Freshwater Biology》 - 2025,70(2) - 共14页

摘要:. However, it remains unclear how the annual and monthly |  monthly (extending to 96 months within the same period | , with monthly data) scales to examine how they changed |  and monthly BS was only slightly affected by the |  eutrophication gradient, whereas monthly composition stability
关键词: biomass stability |  composition stability |  eutrophication |  phytoplankton |  rank-abundance curve change |  rank‐abundance curve change

6. Climate Downscaling Monthly Coastal Sea Surface Temperature Using Convolutional Neural Network and Composite Loss NSTL国家科技图书文献中心

Chen Wang |  Erik Behrens... -  《AI 2024: Advances in Artificial Intelligence,Part I》 -  Australasian Joint Conference on Artificial Intelligence - 2025, - 303~315 - 共13页

摘要: incorporate historical monthly mean SST, enhancing its |  GCM data and observational monthly SST data show our | Climate downscaling bridges the gap between |  coarse-resolution General Circulation Model (GCM | ) outputs and the fine-resolution data needed for regional
关键词: Seasonal climate forecast |  Deep learning

7. Monthly High‐Resolution Historical Climate Data for North America Since 1901 NSTL国家科技图书文献中心

Tongli Wang |  Andreas Hamann... -  《International Journal of Climatology》 - 2025,45(3) - n/a~n/a - 共9页

摘要: monthly historical time series grids since 1901 for our |  based on interpolations of monthly anomalies (change | ABSTRACT Interpolated grids of historical |  climate variables are widely used in climate change |  impact and adaptation research. Here, we contribute
关键词: climate anomalies |  ClimateNA |  downscaling |  historical climate data |  thin plate spline interpolation

8. Monthly mapping of Indonesia’s burned areas: implementation, history, techniques, and future directions NSTL国家科技图书文献中心

Yenni Vetrita |  Israr Albar... -  《International journal of remote sensing》 - 2025,46(1/2) - 636~660 - 共25页

摘要:) the most recent techniques for producing monthly BA |  reduced the accuracy of the national monthly BA product | ABSTRACT Forest and land fires cause |  substantial economic, social, and environmental devastation | . Interagency forest and land fire management has succeeded in
关键词: Burned area |  remote sensing |  fires |  Indonesia

9. Unlocking Southern Ocean Under-Ice Seasonality With a New Monthly Climatology NSTL国家科技图书文献中心

Yamazaki, Kaihe |  Bindoff, Nathaniel L...... -  《Journal of Geophysical Research,C.Oceans》 - 2025,130(1) - n/a~n/a - 共25页

摘要: monthly climatology of the Southern Ocean (south of 40 |  new monthly climatology of the Southern Ocean and | The advent of under-ice profiling float and |  biologging techniques has enabled year-round observation of |  the Southern Ocean and its Antarctic margin. These
关键词: southern ocean |  climatology |  oceanography |  seasonality |  sea ice |  ocean monitoring

10. The Effect of the North Atlantic Oscillation on Monthly Precipitation in Selected European Locations: A Non-Linear Time Series Approach NSTL国家科技图书文献中心

Changli He |  Jian Kang... -  《Environmetrics》 - 2025,36(2) - e2896.1~e2896.21 - 共21页

摘要: monthly precipitation in 30 European cities and towns |  results, based on monthly time series from 1851 up until |  2020, include shifting monthly means for the rainfall | In this article, the relationship between the | , and two Algerian ones, and the North Atlantic
关键词: changing seasonality |  climate change |  local stationarity |  long precipitation series |  non-linear time series |  time-varying parameter |  vector smooth transition autoregression
检索条件monthly

NSTL主题词

  • NSTL学科导航