全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Fast, Sequence Adaptive Parcellation of Brain MR Using Parametric Models NSTL国家科技图书文献中心

Oula Puonti |  Juan Eugenio Iglesia...... -  《Medical image computing and computer-assisted intervention--MICCAI 2013 : Part I /》 -  International Conference on Medical Image Computing and Computer-Assisted Intervention - 2013, - 727~734 - 共8页

摘要: method obtains state-of-the-art segmentation | . Compared to the non-parametric, multi-atlas segmentation |  brain parcellation using the type of generative | , while retaining all the benefits of generative | -valued intensities) MR data. We have validated our
关键词: obtains state-of-the-art;;the non-parametric;;MR data
NSTL主题词: Fasting |  Parametric statistics |  Parametric |  Self tuning |  Sequences |  Cerebrum

2. Fast, Sequence Adaptive Parcellation of Brain MR Using Parametric Models NSTL国家科技图书文献中心

Oula Puonti |  Juan Eugenio Iglesia...... -  《Medical image computing and computer-assisted intervention - MICCAI 2013, part 1: 16th International conference on medical imaging computing and computer-assisted intervention (MICCAI 2013), September 22-26, 2013, Nagoya, Japan》 -  International conference on medical imaging computing and computer-assisted intervention - 2013, - 727~734 - 共8页

摘要: method obtains state-of-the-art segmentation | . Compared to the non-parametric, multi-atlas segmentation |  brain parcellation using the type of generative | , while retaining all the benefits of generative | -valued intensities) MR data. We have validated our
NSTL主题词: Fasting |  Parametric statistics |  Parametric |  Self tuning |  Cerebrum

3. Fast, Sequence Adaptive Parcellation of Brain MR Using Parametric Models NSTL国家科技图书文献中心

Oula Puonti |  Juan Eugenio Iglesia...... -  《Medical image computing and computer-assisted intervention - MICCAI 2013: 16th International Conference, Nagoya, Japan, September 22-26, 2013, Proceedings, p.I》 -  International Conference on Medical Image Computing and Computer-Assisted Intervention - 2013, - 727~734 - 共8页

摘要: method obtains state-of-the-art segmentation | . Compared to the non-parametric, multi-atlas segmentation |  brain parcellation using the type of generative | , while retaining all the benefits of generative | -valued intensities) MR data. We have validated our
NSTL主题词: Fasting |  Parametric statistics |  Parametric |  Self tuning |  Cerebrum
检索条件obtains state-of-the-art;;the non-parametric;;MR data
  • 检索词扩展

NSTL主题词

  • NSTL学科导航