全部 |
  • 全部
  • 题名
  • 关键词
  • NSTL主题词
  • 摘要
  • 会议名称
  • 论文-出处
  • 论文-作者
  • 论文-机构
  • 论文-DOI
  • 会议-出版者
  • 会议-出版地
  • 会议-主编
  • 会议-主办单位
  • 会议-举办地
  • ISSN
  • EISSN
  • ISBN
  • EISBN
检索 搜索会议录 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Integrating kNN Retrieval with Inference on Graphical Models in Case-Based Reasoning NSTL国家科技图书文献中心

Luigi Portinale -  《Case-Based Reasoning Research and Development: 32nd International Conference, ICCBR 2024, Merida, Mexico, July 1-4, 2024, Proceedings》 -  International Conference on Case-Based Reasoning - 2024, - 1~16 - 共16页

摘要:In Case-Based Reasoning, when the similarity |  assumption does not hold, knowledge about the adaptability |  of solutions has to be exploited, in order to |  retrieve cases with adaptable solutions. We propose a |  novel approach to address this issue, where kNN
关键词: Similarity assumption |  Undirected graphical models |  K-NN retrieval

2. Influence Maximization in Ising Models NSTL国家科技图书文献中心

Zongchen Chen |  Elchanan Mossel -  《15th Innovations in Theoretical Computer Science Conference: ITCS 2024, Berkeley, California, USA, 30 January - 2 February 2024, Part 1 of 3》 -  Innovations in Theoretical Computer Science Conference - 2024, - 30-1~30-14 - 共14页

摘要: example of undirected graphical models and has wide |  maximization on sparse Ising models under a bounded budget |  models which is also a critical point for other | Given a complex high-dimensional distribution |  over {±1}~n, what is the best way to increase the
关键词: Influence maximization |  Ising model |  Phase transition |  Correlation decay

3. Neural Graphical Models NSTL国家科技图书文献中心

Harsh Shrivastava |  Urszula Chajewska -  《Symbolic and Quantitative Approaches to Reasoning with Uncertainty: 17th European Conference, ECSQARU 2023, Arras, France, September 19-22, 2023, Proceedings》 -  European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty - 2024, - 284~307 - 共24页

摘要:Probabilistic Graphical Models are often used |  we introduce Neural Graphical Models (NGMs) which |  graphical models, perform inference analysis of a lung |  distribution. Theoretically these models can represent very |  directed, undirected and mixed-edge graphs as well as
关键词: Probabilistic graphical models |  Deep learning |  Learning representations

4. False Discovery Rate Control for Gaussian Graphical Models via Neighborhood Screening NSTL国家科技图书文献中心

Taulant Koka |  Jasin Machkour... -  《2024 32nd European Signal Processing Conference》 -  European Signal Processing Conference - 2024, - 2482~2486 - 共5页

摘要:Gaussian graphical models emerge in a wide |  graphical lasso or neighborhood selection, are known to be |  the individual neighborhoods outputs an undirected |  range of fields. They model the statistical |  relationships between variables as a graph, where an edge
关键词: Graphical models |  Image edge detection |  Input variables |  Process control |  Medical services |  Benchmark testing |  Signal processing |  Topology |  Numerical models |  Tuning

5. Neural Graph Revealers NSTL国家科技图书文献中心

Harsh Shrivastava |  Urszula Chajewska -  《Machine Learning for Multimodal Healthcare Data: First International Workshop, ML4MHD 2023, Honolulu, Hawaii, USA, July 29, 2023, Proceedings》 -  Workshop on Machine Learning for Multimodal Healthcare Data - 2024, - 7~25 - 共19页

摘要: hand, Probabilistic Graphical Models (PGMs) learn an |  from Gaussian graphical models and a multimodal |  norm that NGRs leverage to learn a graphical model |  dependencies between features in the form of an undirected | Sparse graph recovery methods work well where
关键词: Sparse graph recovery |  Probabilistic graphical models |  Deep learning

6. ESTIMATING NORMALIZED GRAPH LAPLACIANS IN FINANCIAL MARKETS NSTL国家科技图书文献中心

Josi Vinicius de M. ... |  Jiaxi Ying... -  《2023 IEEE International Conference on Acoustics, Speech and Signal Processing: ICASSP 2023, Rhodes Island, Greece, 4-10 June 2023, [v.10]》 -  IEEE International Conference on Acoustics, Speech and Signal Processing - 2023, - 7501~7505 - 共5页

摘要: graphical models, play an increasingly important role in | , graphical models. More precisely, we design an |  problem of learning undirected, weighted, normalized |  benchmark models, in a number of datasets involving | Gaussian Markov random fields, a class of
关键词: graphical models |  normalized Laplacian |  financial markets |  time series |  estimation theory

7. Aggregating the Gaussian Experts' Predictions via Undirected Graphical Models NSTL国家科技图书文献中心

Hamed Jalali |  Gjergji Kasneci -  《2022 IEEE International Conference on Big Data and Smart Computing: IEEE International Conference on Big Data and Smart Computing (BigComp), 17-20 Jan. 2022, Daegu, South Korea》 -  IEEE International Conference on Big Data and Smart Computing - 2022, - 23~26 - 共4页

摘要: graphical model (GGM) where the target aggregation is | Distributed Gaussian process (DGP) is a |  popular approach to scale Gaussian processes to big data |  which divides the training data into some subsets | , performs local inference for each partition, and
关键词: Graphical models |  Aggregates |  Training data |  Gaussian processes |  Big Data |  Predictive models |  Gaussian distribution
NSTL主题词: Graphical models |  Gauss

8. Interpreting Potts and Transformer Protein Models Through the Lens of Simplified Attention NSTL国家科技图书文献中心

Nicholas Bhattachary... |  Neil Thomas... -  《Pacific Symposium on Biocomputing 2022 :》 -  Pacific Symposium on Biocomputing - 2022, - 34~45 - 共12页

摘要: positions using undirected graphical models. This approach |  databases not captured by single-layer models. This raises |  powerful structured models of protein family databases. | The established approach to unsupervised |  protein contact prediction estimates coevolving
关键词: Contact Prediction |  Representation Learning |  Language Modeling |  Attention |  Transformer |  BERT |  Markov Random Fields |  Potts Models |  Self-supervised learning
NSTL主题词: Lenses |  Lens Plant |  lens |  through the lens |  Transformer |  Protein

9. Adaptive Noisy Data Augmentation for Regularized Construction of Undirected Graphical Models NSTL国家科技图书文献中心

Yinan Li |  Fang Liu... -  《2021 IEEE 8th International Conference on Data Science and Advanced Analytics: DSAA 2021, Porto, Portugal, 6-9 October 2021》 -  IEEE International Conference on Data Science and Advanced Analytics - 2021, - 1~10 - 共10页

摘要: undirected graphical models. PANDA iteratively optimizes |  practically interpretable and meaningful graphical models. |  software that implements generalized linear models and | We develop the AdaPtive Noise Augmentation |  (PANDA) technique to regularize the estimation of
关键词: Proteins |  Adaptation models |  Analytical models |  Graphical models |  Estimation |  Lung cancer |  Linear programming
NSTL主题词: noisy data |  Graphical models |  Self tuning

10. Learning Undirected Graphs in Financial Markets NSTL国家科技图书文献中心

José Vinícius de Mir... |  Daniel P. Palomar -  《2020 54th Asilomar Conference on Signals, Systems, and Computers: 54th Asilomar Conference on Signals, Systems, and Computers, 1-4 Nov. 2020, Pacific Grove, CA, USA》 -  Asilomar Conference on Signals, Systems, and Computers - 2021, - 741~745 - 共5页

摘要: undirected graphical models under Laplacian structural |  learn undirected graphs that account for stylized | We investigate the problem of learning |  constraints from the point of view of financial market data | . We show that Laplacian constraints have meaningful
关键词: Computers |  Laplace equations |  Graphical models |  Correlation |  Computational modeling |  Clustering algorithms |  Indexes
NSTL主题词: undirected graph |  Stock exchanges |  Markets |  Learning
检索条件Undirected graphical models

NSTL主题词

  • NSTL学科导航