全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. HieRelBERT: Enhanced Lexical Relation Embedding Based-On Hierarchical Contrast Learning NSTL国家科技图书文献中心

Liping Li |  Yexuan Zhang... -  《Computational and Experimental Simulations in Engineering,Volume 4》 -  International Conference on Computational & Experimental Engineering and Sciences - 2025, - 795~815 - 共21页

摘要:. In this paper, we propose a novel lexical relation |  embedding approach grounded in hierarchical contrastive | Understanding the lexical relationships |  between word pairs is paramount for advancing |  applications in natural language processing. However
关键词: Lexical relation |  Contrast learning |  Prompt learning

2. AttRel: Single Module Based Joint Entity and Relation Extraction with Attention Enhanced Text Embedding NSTL国家科技图书文献中心

Mengmeng Cui |  Chenbin Li... -  《Advanced Data Mining and Applications,Part V》 -  International Conference on Advanced Data Mining and Applications - 2025, - 328~343 - 共16页

摘要: exploit the rich semantic information in relation labels |  as relation prior knowledge, which can provide |  understand entity relations, classify relation labels, and |  enhance the accuracy of joint entity and relation |  embedding, named AttRel. Specifically, a novel single
关键词: Joint extraction |  Attention mechanisms |  Relation embedding

3. Concepts and Relations Features Are All You Need for Embedding-Based Ontology Matching NSTL国家科技图书文献中心

Samira Oulefki |  Lamia Berkani... -  《Web Information Systems Engineering - WISE 2024,Part I》 -  International Conference on Web Information Systems Engineering - 2025, - 416~430 - 共15页

摘要: embedding-based OM approaches, GATHER excels by seamlessly |  embedding matcher. Extensive experiments across multiple | Ontology matching (OM) is one of the most |  challenging problems in the Semantic Web. Despite |  significant progress over the past few decades, evidenced by
关键词: Ontology matching |  Graph transformer |  Relational graph transformer |  Relation embedding generation

4. GeoEntity-type constrained knowledge graph embedding for predicting natural-language spatial relations NSTL国家科技图书文献中心

Lei Hu |  Wenwen Li... -  《International journal of geographical information science》 - 2025,39(1/2) - 376~399 - 共24页

摘要: overcome this limitation, we developed a Spatial Relation | -based Knowledge Graph Embedding framework, SR-KGE |  relation terms among distinct geoentities. This method |  diversity of natural language expressions in the embedding |  performance in spatial relation inference compared to
关键词: Spatial relation |  natural language |  knowledge graph embedding |  joint training

5. Contextualizing Entity Representations for Zero-Shot Relation Extraction with Masked Language Models NSTL国家科技图书文献中心

Riley Capshaw |  Eva Blomqvist -  《Knowledge Engineering and Knowledge Management》 -  International Conference on Knowledge Engineering and Knowledge Management - 2025, - 399~415 - 共17页

摘要: documents in order to facilitate relation extraction (RE | Knowledge graphs (KGs) and their related |  ontologies constitute a key component in modern knowledge | -based systems. However, hand-crafting these is not |  scalable, particularly due to the rate at which knowledge
关键词: Knowledge graphs |  Masked language models |  Machine reading |  Entity embedding |  Document-level relation extraction

6. Link prediction for knowledge graphs based on extended relational graph attention networks NSTL国家科技图书文献中心

Zhanyue Cao |  Chao Luo -  《Expert Systems with Application》 - 2025,259(Jan.) - 125260.1~125260.12 - 共12页

摘要: embeddings. Secondly, a novel entity and relation embedding |  article, an entity-relation-level graph attention | Limited by the sufficiency and timeliness of |  information obtained, the connections among entities of |  knowledge graphs need to be updated continuously
关键词: Knowledge graphs |  Link prediction |  Attention mechanism |  Knowledge discovery

7. Expressiveness Analysis and Enhancing Framework for Geometric Knowledge Graph Embedding Models NSTL国家科技图书文献中心

Tengwei Song |  Long Yin... -  《IEEE Transactions on Knowledge and Data Engineering》 - 2025,37(1) - 306~318 - 共13页

摘要: embedding models can represent relation patterns. In this | Existing geometric knowledge graph embedding |  different relation patterns, which aims to enhance the |  relation patterns by quantifying the size of the solution |  on geometric knowledge graph embedding models by
关键词: Analytical models |  Data models |  Tail |  Knowledge graphs |  Vectors |  Tensors |  Predictive models |  Semantics |  Optimization |  Numerical models

8. Dual Context Representation Learning Framework for Entity Alignment NSTL国家科技图书文献中心

Bo Cheng |  Jia Zhu... -  《Big Data Mining and Analytics》 - 2025,8(2) - 346~363 - 共18页

摘要: embedding module introduces relation information to more |  accurately aggregate neighbor context. The relation-level |  embedding module utilizes neighbor context to enhance |  relation-level embeddings. To eliminate semantic gaps |  between neighbor-level and relation-level embeddings
关键词: Representation learning |  Adaptation models |  Aggregates |  Semantics |  Knowledge graphs |  Big Data |  Benchmark testing |  Data mining

9. TGformer: A Graph Transformer Framework for Knowledge Graph Embedding NSTL国家科技图书文献中心

Fobo Shi |  Duantengchuan Li... -  《IEEE Transactions on Knowledge and Data Engineering》 - 2025,37(1) - 526~541 - 共16页

摘要:Knowledge graph embedding is efficient method |  embedding of missing entities by a single triple only |  unable to discern valuable entity (relation |  knowledge graph embedding (TGformer). It is the first to |  each predicted triplet, which models the relation
关键词: Knowledge graphs |  Transformers |  Predictive models |  Context modeling |  Semantics |  Tensors |  Periodic structures |  Graph neural networks |  Data models |  Parallel processing

10. Enhancing Embedding and Hierarchical Reward Shaping for Multi-Hop Reasoning with Reinforcement Learning NSTL国家科技图书文献中心

Heng Li |  Jinhui Wei... -  《Advanced Data Mining and Applications,Part II》 -  International Conference on Advanced Data Mining and Applications - 2025, - 414~429 - 共16页

摘要: reasoning ability by decomposing relation-entity pairs for |  consists of the Enhancing Embedding mechanism and the |  entities. The enhancing embedding mechanism effectively |  reasoning requirements of the relation layer and entity |  designs a new relation layer reward to enhance the
关键词: Knowledge graph embedding |  Reward shaping |  Multi-Hop reasoning |  Reinforcement learning
检索条件Relation embedding
  • 检索词扩展

NSTL主题词

  • NSTL学科导航