全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Magnitude Attention-based Dynamic Pruning NSTL国家科技图书文献中心

Jihye Back |  Namhyuk Ahn... -  《Expert Systems with Application》 - 2025,276(Jun.) - 126957.1~126957.11 - 共11页

摘要:Existing pruning methods often rely on weight |  Dynamic Pruning (MAP) method, which applies the |  but also outperform previous pruning methods on |  importance to identify sparse structures but typically |  apply this information statically, without leveraging
关键词: Model compression |  Model pruning |  Dynamic pruning |  Deep learning |  Optimization

2. Isomorphic Pruning for Vision Models NSTL国家科技图书文献中心

Gongfan Fang |  Xinyin Ma... -  《Computer Vision - ECCV 2024,Part XXX》 -  European Conference on Computer Vision - 2025, - 232~250 - 共19页

摘要:Structured pruning reduces the computational |  this, we present Isomorphic Pruning, a simple |  across different model sizes. Isomorphic Pruning |  pruning. Our empirical results on ImageNet-1K |  demonstrate that Isomorphic Pruning surpasses several
关键词: Network pruning |  Vision transformers |  CNNs

3. RePaIR: Repaired pruning at initialization resilience NSTL国家科技图书文献中心

Zhao, Haocheng |  Guan, Runwei... -  《Neural Networks》 - 2025,184 - Article 107086~Article 107086 - 共15页

摘要: application of neural network pruning. Unstructured pruning | . Unstructured Pruning at Initialization (PaI) optimizes the |  iterative pruning pipeline, but sparse weights increase |  obtaining the best pruning mask without considering | , and name it Repaired Pruning at Initialization
关键词: Pruning at initialization |  Lipschitz |  Neural network |  Unstructured pruning

4. Effective Layer Pruning Through Similarity Metric Perspective NSTL国家科技图书文献中心

Ian Pons |  Bruno Yamamoto... -  《Pattern Recognition,Part V》 -  International Conference on Pattern Recognition - 2025, - 423~438 - 共16页

摘要: demonstrated that pruning structures from these models is a |  filters. Studies have also been devoted to layer pruning | . However, layer pruning often hurts the network |  rates. This work introduces an effective layer-pruning |  pruning methods. Our method estimates the relative
关键词: Layer pruning |  Similarity metric |  Efficient deep learning

5. CpdsConv: Continuous Pruning for Depthwise Separable Convolution NSTL国家科技图书文献中心

Yan Ding |  Jianbang Xiao... -  《Tenth Symposium on Novel Optoelectronic Detection Technology and Applications,Part One of Three Parts》 -  Symposium on Novel Optoelectronic Detection Technology and Applications - 2025, - 1351111.1~1351111.19 - 共19页

摘要:Current structured pruning methods typically |  evaluation metrics for pruning, leading to significant |  drops in network accuracy post-pruning. This paper |  proposes a novel continuous pruning method for depthwise |  employ fixed thresholds and rank channels based on
关键词: Convolutional neural networks |  Structured pruning |  Evaluation metrics |  Classification

6. LPViT: Low-Power Semi-structured Pruning for Vision Transformers NSTL国家科技图书文献中心

Kaixin Xu |  Zhe Wang... -  《Computer Vision - ECCV 2024,Part LXXI》 -  European Conference on Computer Vision - 2025, - 269~287 - 共19页

摘要: introduce a new block-structured pruning to address the | . Unlike unstructured pruning or channel-wise structured |  pruning, block pruning leverages the block-wise |  matrix multiplications. To optimize this pruning scheme |  algorithm to achieve post-training pruning for ViTs
关键词: Network pruning |  Vision transformers

7. Self-distillation enhanced adaptive pruning of convolutional neural networks NSTL国家科技图书文献中心

Diao, Huabin |  Li, Gongyan... -  《Pattern Recognition》 - 2025,157 - 共11页

摘要: adaptive pruning algorithm based on self-distillation |  each channel to control channel pruning and |  integrates the pruning process into network training | , enabling pruning and fine-tuning in a single training |  framework requires only a single overall pruning rate to
关键词: Convolutional neural networks |  Self-distillation |  Adaptive pruning

8. Pruning convolutional neural networks for inductive conformal prediction NSTL国家科技图书文献中心

Zhao X. |  Bellotti A.... -  《Neurocomputing》 - 2025,611(Jan.1) - 1.1~1.19 - 共19页

摘要:© 2024Neural network pruning is a popular |  neural network pruning in the context of conformal |  nowadays. Therefore, we focus on pruning CNNs and, in |  particular, filter-level pruning. We first propose a brute |  contribution. Furthermore, we improve the global pruning
关键词: Conformal prediction |  Convolutional neural network |  Filter-level pruning |  Neural pruning |  Uncertainty estimation

9. Federated adaptive pruning with differential privacy NSTL国家科技图书文献中心

Zhousheng Wang |  Jiahe Shen... -  《Future generations computer systems》 - 2025,169(Aug.) - 107783.1~107783.10 - 共10页

摘要: Adaptive Pruning (FAP), a lightweight method that |  integrates FL with adaptive pruning by adjusting explicit | Federated Learning (FL), as an emerging |  distributed machine learning technique, reduces the |  computational burden on the central server through
关键词: Federated learning |  Lightweight machine learning |  Data pruning |  Differential privacy

10. Straightforward Layer-Wise Pruning for More Efficient Visual Adaptation NSTL国家科技图书文献中心

Ruizi Han |  Jinglei Tang -  《Computer Vision - ECCV 2024,Part LXXII》 -  European Conference on Computer Vision - 2025, - 236~252 - 共17页

摘要:. Structural pruning effectively reduces model redundancy | ; however, common pruning methods often lead to an |  pruning structures based on pruning rates and data |  Straightforward layer-wise pruning method, called SLS, for |  pruning PETL-transferred models. By evaluating
关键词: Parameter-efficient transfer learning |  Network pruning |  T-SNE
检索条件Pruning
  • 检索词扩展

NSTL主题词

  • NSTL学科导航