全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. SCORE: Simple Contrastive Representation and Reset-Ensemble for offline meta-reinforcement learning NSTL国家科技图书文献中心

Yang H. |  Lin K.... -  《Knowledge-based systems》 - 2025,309(Jan.30) - 1.1~1.10 - 共10页

摘要:© 2024Offline meta-reinforcement learning |  learning framework without negative samples to pre-train |  during meta-training. Furthermore, SCORE employs a |  continual learning ability and enhance their perception of |  (OMRL) aims to train agents to quickly adapt to new
关键词: Contrastive learning |  Offline meta reinforcement learning |  Reset-Ensemble

2. Harnessing Meta-Reinforcement Learning for Enhanced Tracking in Geofencing Systems NSTL国家科技图书文献中心

Alireza Famili |  Shihua Sun... -  《IEEE Open Journal of the Communications Society》 - 2025,6 - 944~960 - 共17页

摘要: MetaFence: Meta-Reinforcement Learning for Geofencing |  are optimally deployed using a meta-reinforcement |  learning (meta-RL) framework. Our proposed meta-RL method | -induced errors. Moreover, the meta-training approach |  traditional methods. Furthermore, we show that the meta
关键词: 5G mobile communication |  Accuracy |  Three-dimensional displays |  Geometry |  Drones |  Distance measurement |  Wireless fidelity |  NP-hard problem |  Mixed reality |  Metaverse

3. Contrastive meta-reinforcement learning for heterogeneous graph neural architecture search NSTL国家科技图书文献中心

Zixuan Xu |  Jia Wu -  《Expert Systems with Application》 - 2025,260(Jan.) - 125433.1~125433.13 - 共13页

摘要: called Contrastive Meta-reinforcement learning-based |  gradient-based meta-learning to rapidly adapt to new |  tasks by leveraging the knowledge acquired from meta | -training tasks. Secondly, since our meta-training tasks |  learning to unify the evaluation metric across all tasks
关键词: Heterogeneous graph neural architecture search |  Meta-learning |  Contrastive learning

4. Hierarchical Multi-Agent Meta-Reinforcement Learning for Cross-Channel Bidding NSTL国家科技图书文献中心

Shenghong He |  Chao Yu... -  《IEEE Transactions on Knowledge and Data Engineering》 - 2025,37(3) - 1241~1254 - 共14页

摘要: multi-agent reinforcement learning framework for multi | -based meta-channel knowledge learning method to |  problem of extrapolation errors in offline learning | Real-time bidding (RTB) plays a pivotal role |  in online advertising ecosystems. Advertisers
关键词: Resource management |  Advertising |  Optimization |  Hidden Markov models |  Reinforcement learning |  Real-time systems |  Dynamic scheduling |  Extrapolation |  Training |  Search problems

5. Adaptive Jamming Decision-Making Against FHSS Communications via Inexpert Demonstrations Assisted Meta Reinforcement Learning NSTL国家科技图书文献中心

Ning Rao |  Hua Xu... -  《IEEE communications letters》 - 2025,29(1) - 105~109 - 共5页

摘要:Reinforcement learning (RL)s powerful | , we propose a meta RL method for frequency-hopping |  network is meta-trained with multiple diverse tasks to |  demonstrations, along with learning rate adaptation to achieve |  optimization capabilities have been extensively applied in
关键词: Jamming |  Decision making |  Bandwidth |  Optimization |  Reinforcement learning |  Cloning |  Vectors |  Space exploration |  Long short term memory |  Interference

6. Bionic cooperative load frequency control in interconnected grids: A multi-agent deep Meta reinforcement learning approach NSTL国家科技图书文献中心

Li J. |  Dai J.... -  《Applied energy》 - 2025,379(Feb.1) - 1.1~1.13 - 共13页

摘要: Automatic Curriculum Multi-Agent Deep Meta Actor-Critic |  employs a hybrid curriculum learning strategy, enabling |  gradual learning and adaptation, which enhances the | © 2024In the interconnected power grid |  operating within a performance-based frequency regulation
关键词: Automatic curriculum multi-agent deep meta actor critic |  Distributed neural network |  Interconnected grid |  Load frequency control |  Regulation mileage payment

7. Efficient Replay Deep Meta-Reinforcement Learning for Active Fault-Tolerant Control of Solid Oxide Fuel Cell Systems Considering Multivariable Coordination NSTL国家科技图书文献中心

Jiawen Li |  Tao Zhou -  《IEEE transactions on transportation electrification》 - 2025,11(1) - 4803~4817 - 共15页

摘要: and meta-learning techniques to improve the |  deep meta-deterministic policy gradient (ER-DMDPG |  robustness and multitask cooperative learning capability of | , which is trained by a cooperative meta-learner and a | A data-driven integrated active fault-tolerant
关键词: Fault tolerant systems |  Fault tolerance |  Hydrogen |  Voltage control |  Fuels |  Fuel cells |  Temperature control |  Prediction algorithms |  Heuristic algorithms |  Genetic algorithms

8. A meta-heuristic algorithm combined with deep reinforcement learning for multi-sensor positioning layout problem in complex environment NSTL国家科技图书文献中心

Yida Ning |  Zhenzu Bai... -  《Expert Systems with Application》 - 2025,261(Feb.) - 125555.1~125555.16 - 共16页

摘要:In a multi-sensor positioning system (MSPS | ), the layout of sensors plays a crucial role in |  determining the system's performance. Therefore, addressing |  the sensor layout problem (SLP) within the MSPS is |  an essential approach to achieve high-precision
关键词: Multi-sensor positioning system |  Sensor layout problem |  Constrained multi-objective evolutionary algorithm |  Deep Q network |  Multi-operator reproduction

9. Meta-learning-based fault-tolerant attitude control of hypersonic flight vehicle with input constraints NSTL国家科技图书文献中心

Xiaoxiang,Hu |  Kejun,Dong... -  《Nonlinear dynamics》 - 2025,113(1) - 711~728 - 共18页

摘要:Abstract In this study, a meta-learning-based |  advantage of integral reinforcement learning (IRL | ) algorithm and meta-learning, can greatly reduce the |  control law. The meta-learning ideas are also adopted to |  improved by meta-learning. The ultimately uniformly
关键词: Hypersonic flight vehicle |  Attitude tracking control |  Fault-tolerant control |  Integral reinforcement learning |  Meta-learning

10. A Survey on Deep Learning-Based Traffic Signal Control NSTL国家科技图书文献中心

Qinbatu Si |  Lirun Yang... -  《Journal of circuits, systems and computers》 - 2025,34(2) - 1.1~1.45 - 共45页

摘要: Reinforcement Learning, Federated Learning, and Meta-learning |  Reinforcement Learning in this field, there remains a notable |  researchers are turning to Deep Learning (DL) methods to | Intelligent Traffic Management is a crucial |  issue closely related to daily life and productivity
关键词: Traffic Signal Control |  intelligent transportation system |  Deep Reinforcement Learning |  Federated Learning |  Meta-learning
检索条件Meta reinforcement learning
  • 检索词扩展

NSTL主题词

  • NSTL学科导航