全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Generalization potential of large language models NSTL国家科技图书文献中心

Mikhail,Budnikov |  Anna,Bykova... -  《Neural computing & applications》 - 2025,37(4) - 1973~1997 - 共25页

摘要: especially the advent of large language models (LLMs |  language models with stochastic parrots to stating that |  language processing tasks. | The rise of deep learning techniques and | ) intensified the discussions around possibilities that
关键词: Large language models |  Generalization |  Semantic information

2. Column Property Annotation Using Large Language Models NSTL国家科技图书文献中心

Keti Korini |  Christian Bizer -  《The Semantic Web: ESWC 2024 Satellite Events,Part I》 -  European Semantic Web Conference - 2025, - 61~70 - 共10页

摘要: large language models (LLMs) for the CPA task. We | Column property annotation (CPA), also known |  as column relationship prediction, is the task of |  predicting the semantic relationship between two columns in |  a table given a set of candidate relationships
关键词: Table annotation |  Large language models |  Column property annotation

3. Unlocking the Potential of Large Language Models for Explainable Recommendations NSTL国家科技图书文献中心

Yucong Luo |  Mingyue Cheng... -  《Database Systems for Advanced Applications,Part V》 -  International Conference on Database Systems for Advanced Applications |  International Workshop on Big Data Management and Service |  International Workshop on Graph Data Management and Analysis |  International Workshop on Big Data Quality Management |  Workshop on Emerging Results inData Science and Engineering - 2025, - 286~303 - 共18页

摘要: generator with the recently emerging large language models |  systems focus on using small-size language models. It |  increasingly prevalent, largely due to advances in language |  recommender models and LLM-based explanation generators |  experiments over several benchmark recommender models and
关键词: Explainable recommendation |  Large language models

4. Enhancing Translation Validation of Compiler Transformations with Large Language Models NSTL国家科技图书文献中心

Yanzhao Wang |  Fei Xie -  《International journal of software engineering and knowledge engineering》 - 2025,35(1) - 45~57 - 共13页

摘要: integrates Large Language Models (LLMs) into translation | This paper presents a framework that |  validation, targeting LLVM compiler transformations where |  formal verification tools fall short. Our framework |  utilizes the existing tools, like Alive2, to perform
关键词: Large Language Models |  formal verification |  compilers |  LLVM

5. LLMs4OM: Matching Ontologies with Large Language Models NSTL国家科技图书文献中心

Hamed Babaei Giglou |  Jennifer D'Souza... -  《The Semantic Web: ESWC 2024 Satellite Events,Part I》 -  European Semantic Web Conference - 2025, - 25~35 - 共11页

摘要: of the potential of Large Language Models (LLMs |  knowledge or predictive models, with limited exploration | Ontology Matching (OM), is a critical task in |  knowledge integration, where aligning heterogeneous |  ontologies facilitates data interoperability and knowledge
关键词: Ontology matching |  Ontology alignment |  Large language models |  Retrieval augmented generation |  Zero-Shot testing

6. Detoxifying Large Language Models via Kahneman-Tversky Optimization NSTL国家科技图书文献中心

Qingquan Li |  Wenlong Du... -  《Natural Language Processing and Chinese Computing,Part V》 -  CCF International Conference on Natural Language Processing and Chinese Computing - 2025, - 409~417 - 共9页

摘要:Currently, the application of Large Language |  Models (LLMs) faces significant security threats |  answering and language understanding. Our proposed method | . Harmful questions and adversarial attack prompts can |  induce the LLMs to generate toxic responses. Therefore
关键词: Large language models |  Detoxification |  Alignment

7. Security and Privacy Challenges of Large Language Models: A Survey NSTL国家科技图书文献中心

BADHAN CHANDRA DAS |  M. HADI AMINI... -  《ACM computing surveys》 - 2025,57(6) - 152.1~152.39 - 共39页 - 被引量:2

摘要:Large language models (LLMs) have demonstrated | , such as generating and summarizing text, language |  quite popular tools in natural language processing |  advantages, these models are also vulnerable to security |  extraordinary capabilities and contributed to multiple fields
关键词: Large language models |  attack and defense mechanisms

8. Distributed Dataset Framework for Large Language Models Pre-training NSTL国家科技图书文献中心

Nao Souma |  Yui Obara... -  《Knowledge Management and Acquisition for Intelligent Systems》 -  Pacific Rim Knowledge Acquisition Workshop |  Pacific Rim International Conference on Artificial Intelligence - 2025, - 289~297 - 共9页

摘要:The performance of Large Language Models (LLMs | . Maintaining such large datasets is challenging for a single | ) relies on massive and high-quality pre-processed |  datasets, often exceeding several terabytes in size |  organization. A collaborative framework between multiple
关键词: Large language models |  Distributed dataset |  LLM development

9. ZeFaV: Boosting Large Language Models for Zero-Shot Fact Verification NSTL国家科技图书文献中心

Son T. Luu |  Hiep Nguyen... -  《PRICAI 2024,Part II》 -  Pacific Rim International Conference on Artificial Intelligence - 2025, - 288~295 - 共8页

摘要: ability of large language models to extract the |  language models by leveraging the in-context learning |  the performance on fact verification task of large | In this paper, we propose ZeFaV - a zero-shot |  based fact-checking verification framework to enhance
关键词: Fact verification |  Prompting |  Zero-shot |  Large language models

10. On Leveraging Large Language Models for Multilingual Intent Discovery NSTL国家科技图书文献中心

RUDOLF CHOW |  KING YIU SUEN... -  《ACM transactions on management information systems》 - 2025,16(1) - 7.1~7.17 - 共17页

摘要: language models. By performing joint extraction of intent |  users nat- urally change over time, models only |  leveraging the multilingual capabilities of recent large | Intent discovery is vital for any real-world |  dialogue systems such as chatbot. Since the intents of
关键词: Intent discovery |  multilingual |  large language models
检索条件Large language models
  • 检索词扩展

NSTL主题词

  • NSTL学科导航