全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Surface data imputation with stochastic processes NSTL国家科技图书文献中心

Jawaid, A. |  Schmidt, S.... -  《Measurement Science & Technology》 - 2025,36(4) - 046131.1~046131.11 - 共11页

摘要: features of the surface. Therefore, data imputation must | . Traditional surface data imputation methods rely on simple |  imputation. This approach, which originates from surface | Spurious measurements frequently occur in |  surface data from technical components. Excluding or
关键词: surface |  imputation |  interpolation |  Gaussian processes

2. Generative adversarial learning for missing data imputation NSTL国家科技图书文献中心

Xinyang,Wang |  Hongyu,Chen... -  《Neural computing & applications》 - 2025,37(3) - 1403~1416 - 共14页

摘要: have been proposed for missing data imputation and | . Nevertheless, the inputs of imputation networks of these | , these methods may not provide satisfactory imputation |  data imputation. The method is based on the |  imputation network, namely a generator, is not incomplete
关键词: Missing data imputation |  Neural networks |  Deep learning |  Industrial process

3. MetaLIRS: Meta-learning for Imputation and Regression Selection NSTL国家科技图书文献中心

Isil Baysal Erez |  Jan Flokstra... -  《Intelligent Data Engineering and Automated Learning - IDEAL 2024,Part I》 -  International Conference on Intelligent Data Engineering and Automated Learning - 2025, - 155~166 - 共12页

摘要: handle missing data directly, imputation methods are |  imputation method is non-trivial, however. Moreover, our |  imputation method does not always result in the best |  Learning Imputation and Regression Selection) framework |  resource-friendly recommendation on which imputation and
关键词: Missing data |  Imputation |  Regression

4. Assessing Adversarial Effects of Noise in Missing Data Imputation NSTL国家科技图书文献中心

Arthur Dantas Mangus... |  Ricardo Cardoso Pere...... -  《Intelligent Systems,Part I》 -  Brazilian Conference on Intelligent Systems - 2025, - 200~214 - 共15页

摘要: imputation strategies emerged as a possible solution for |  value imputation (MVI) methods is the presence of |  imputation using seven state-of-the-art MVI methods. Our |  performing the imputation task and evaluating the quality |  of the imputation directly. Additionally, we
关键词: Missing data imputation |  Noise filtering

5. Evaluating Algorithms for Missing Value Imputation in Real Battery Data NSTL国家科技图书文献中心

Dauda Nanman Sheni |  Anton Herman Basson... -  《Artificial Intelligence XLI,Part II》 -  SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence - 2025, - 75~87 - 共13页

摘要: imputation techniques for missing value imputation on real |  the multiple imputation by chained equations |  algorithm are evaluated as imputation techniques. The |  imputation tasks. This research informs the selection and |  imputation and error correction, with k-nearest neighbour
关键词: Error correction |  Missing value imputation

6. Multiple Imputation for Longitudinal Data: A Tutorial NSTL国家科技图书文献中心

Rushani Wijesuriya |  Margarita Moreno‐Bet...... -  《Statistics in medicine.》 - 2025,44(3/4) - e10274~e10274 - 共24页 - 被引量:1

摘要:. Multiple imputation (MI) is widely used to handle missing |  that the imputation model is compatible with the |  model should be reflected in the imputation process |  using generalized linear mixed imputation models |  use of advanced imputation procedures. In this
关键词: clustered data |  fully conditional specification |  joint modeling |  longitudinal data |  missing data |  multiple imputation

7. Multiple imputation with competing risk outcomes NSTL国家科技图书文献中心

Austin, Peter C. -  《Computational statistics》 - 2025,40(2) - 929~949 - 共21页

摘要: Imputation (MI) is a popular method to address the presence |  of missing data. MI uses an imputation model to |  is multivariate imputation using chained equations |  functions were included in the imputation models (the | In time-to-event analyses, a competing risk is
关键词: Competing risks |  Survival analysis |  Missing data |  Multiple imputation |  Monte Carlo simulations

8. Comparison of imputation methods for univariate categorical longitudinal data NSTL国家科技图书文献中心

Kevin,Emery |  Matthias,Studer... -  《Quality & Quantity》 - 2025,59(2) - 1767~1791 - 共25页

摘要: multiple imputation methods proposed so far in the |  multiple imputation method improves the quality of |  imputation in trajectories subject to time-varying | Abstract The life course paradigm emphasizes |  the need to study not only the situation at a given
关键词: Fully conditional specification |  Imputation |  Life course data |  Missing data |  Multiple imputation for categorical time series

9. Iterative Time Series Imputation by Maintaining Dependency Consistency NSTL国家科技图书文献中心

HANWEN HU |  SHIYOU QIAN... -  《ACM transactions on knowledge discovery from data》 - 2025,19(1) - 6.1~6.24 - 共24页

摘要:Data imputation is crucial in the analysis of |  series imputation lies in preventing the model from |  for data imputation. Based on this idea, we propose |  learning-validation imputation paradigm. Firstly, IRM | -the-art imputation models. The experiment results
关键词: Time Series Imputation |  Iterative Reconstruction |  Incomplete Representation

10. GIG: Graph Data Imputation With Graph Differential Dependencies NSTL国家科技图书文献中心

Jiang Hua |  Michael Bewong... -  《Databases Theory and Applications》 -  Australasian Database Conference - 2025, - 347~358 - 共12页

摘要:Data imputation addresses the challenge of |  graph data imputation approach called GIG which relies |  the data imputation process making it more reliable |  imputing missing values in database instances, ensuring |  consistency with the overall semantics of the dataset
关键词: Data imputation |  Transformer |  Graph difference dependency
检索条件IMPUTATION
  • 检索词扩展

NSTL主题词

  • NSTL学科导航