全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. FEAttack: A Fast and Efficient Hard-Label Textual Attack Framework NSTL国家科技图书文献中心

Miaomiao Li |  Jun Ma... -  《Wireless Artificial Intelligent Computing Systems and Applications,Part II》 -  International Conference on Wireless Artificial Intelligent Computing Systems and Applications - 2025, - 167~179 - 共13页

摘要:Hard-label textual attacks are realistic but |  label information as a guide to generate adversarial | , we propose FEAttack, a Fast and Effective hard | -label textual Attack framework for generating high |  challenging because they can only rely on the predicted
关键词: Hard-label |  Textual attack |  Two-stage optimization

2. Hard-Label Cryptanalytic Extraction of Neural Network Models NSTL国家科技图书文献中心

Yi Chen |  Xiaoyang Dong... -  《Advances in Cryptology - ASIACRYPT 2024,Part VIII》 -  International Conference on the Theory and Application of Cryptology and Information Security - 2025, - 207~236 - 共30页

摘要: neural networks operate under a hard-label setting |  hard-label setting, which applies to ReLU neural | The machine learning problem of extracting |  neural network parameters has been proposed for nearly |  three decades. Functionally equivalent extraction is a
关键词: Cryptanalysis |  ReLu neural networks |  Functionally equivalent extraction |  Hard-Label

3. Feature-Level Knowledge Distillation for Place Recognition Based on Soft-Hard Labels Teaching Paradigm NSTL国家科技图书文献中心

Zhenyu Li |  Pengjie Xu... -  《IEEE transactions on intelligent transportation systems》 - 2025,26(2) - 2091~2101 - 共11页

摘要: soft-hard label teaching feature-level knowledge | -label teaching and hard-label teaching, which | The motivation of visual place recognition |  (VPR) is to enable robots to identify and localize |  specific places within an environment using visual cues
关键词: Adaptation models |  Robots |  Mobile robots |  Feature extraction |  Training |  Knowledge engineering |  Transformers |  Navigation |  Knowledge transfer |  Target tracking

4. Meta-learning collaborative optimization for lifetime prediction of lithium-ion batteries considering label noise NSTL国家科技图书文献中心

Wang G. |  Wang C.... -  《Journal of Energy Storage》 - 2025,107(Jan.) - 1.1~1.13 - 共13页

摘要:. Additionally, an information entropy-based hard label |  model overfitting to label noise. To address this |  noisy-labeled samples. Then, a soft label generation | , enhancing the accuracy and diversity of soft label |  with label noise, the proposed framework is proven
关键词: Information entropy |  Label noise |  Lifetime prediction |  Lithium-ion batteries |  Meta-learning

5. A Quantum Unique Games Conjecture NSTL国家科技图书文献中心

Hamoon Mousavi |  Taro Spirig -  《16th Innovations in Theoretical Computer Science Conference,Part 3 of 3》 -  Innovations in Theoretical Computer Science Conference - 2025, - 共16页

摘要: remain hard to approximate. While the quantum nonlocal |  to be hard - indeed undecidable - their |  introduce definitions for the quantum extensions of Label | -Cover and Unique-Label-Cover. We show that these | After the NP-hardness of computational
关键词: Hardness of approximation |  Quantum computing |  Noncommutative constraint satisfaction problems |  Fourier analysis

6. MFLSCI: Multi-granularity fusion and label semantic correlation information for multi-label legal text classification NSTL国家科技图书文献中心

Chunyun Meng |  Yuki Todo... -  《Engineering Applications of Artificial Intelligence》 - 2025,139(Jan. Pt.B) - 109604.1~109604.13 - 共13页

摘要:Multi-label text classification tasks face |  need for effective utilization of label correlations |  label semantic correlation information. Our model |  leverages graph convolutional networks to extract label |  label omission issues. Additionally, text
关键词: Multi-label classification |  Legal text processing |  Graph convolution neural network |  Natural language processing

7. Improving Time Series Classification with Representation Soft Label Smoothing NSTL国家科技图书文献中心

Hengyi Ma |  Weitong Chen -  《Advanced Data Mining and Applications,Part IV》 -  International Conference on Advanced Data Mining and Applications - 2025, - 297~310 - 共14页

摘要: predictions, such as label smoothing and confidence penalty | . Building upon the concept of label smoothing, we propose |  labels, which we refer to as representation soft label |  smoothing. We apply label smoothing, confidence penalty | , and our method representation soft label smoothing
关键词: Time series classification |  Overfitting |  Label smoothing

8. On approximate reconfigurability of label cover NSTL国家科技图书文献中心

Naoto Ohsaka -  《Information processing letters》 - 2025,189(Mar.) - 106556.1~106556.9 - 共9页

摘要: satisfying labelings _(mi)i and _(tar), the Label Cover |  into _(tar) by repeatedly changing the label of a | , referred to as Maxmin Label Cover Reconfiguration: We are |  Label Cover within any constant factor, gives strong |  inapproximability results for many NP-hard problems, one may think
关键词: Our results suggest that a reconfiguration analogue of the parallel repetition theorem is

9. Cellular spatial-semantic embedding for multi-label classification of cell clusters in thyroid fine needle aspiration biopsy whole slide images NSTL国家科技图书文献中心

Gao, Juntao |  Zhang, Jing... -  《Pattern recognition letters》 - 2025,188(Feb.) - 125~132 - 共8页

摘要:Multi-label classification of cell clusters is |  obstacles to the precise multi-label classification of |  structures and diverse label semantics in FNAB-WSI, we |  propose a multi-label classification method of cell |  multi-label semantic information. To address the
关键词: Computer-aided diagnosis |  Whole-slide image |  Cell cluster |  Multi-label classification |  Spatial-semantic embedding

10. Meta-Learning Guided Label Noise Distillation for Robust Signal Modulation Classification NSTL国家科技图书文献中心

Xiaoyang Hao |  Zhixi Feng... -  《IEEE internet of things journal》 - 2025,12(1) - 402~418 - 共17页

摘要:, label mislabeling often occurs in practical scenarios |  meta-learning guided label noise distillation method |  label noise or errors. Specifically, we propose a |  discriminate and distill label noise. Following the notion |  performance of hard-to-classify categories with few-shot
关键词: Noise |  Robustness |  Training |  Noise measurement |  Modulation |  Industrial Internet of Things |  Accuracy
检索条件Hard-label
  • 检索词扩展

NSTL主题词

  • NSTL学科导航