全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Unaligned Federated Knowledge Graph Embedding NSTL国家科技图书文献中心

Deyu Chen |  Hong Zhu... -  《The Semantic Web - ISWC 2024,Part I》 -  International Semantic Web Conference - 2025, - 180~198 - 共19页

摘要:Recently, knowledge graph embedding (KGE | ) methods under the federated learning paradigm have |  received much attention. Its privacy-preserving |  decentralized training method effectively utilizes the |  knowledge graphs held by different clients. Existing
关键词: Knowledge graph embedding |  Federated learning |  Heterogeneous data

2. Zero-Shot Heterogeneous Graph Embedding via Semantic Extraction NSTL国家科技图书文献中心

Zhichao Luo |  Siyuan Zhao... -  《PRICAI 2024,Part II》 -  Pacific Rim International Conference on Artificial Intelligence - 2025, - 29~41 - 共13页

摘要:Graph embedding, which aims to project a graph |  significant attention. Semi-supervised graph embedding takes |  formidable challenge for conventional graph embedding |  novel heterogeneous graph embedding method, termed |  Semantic Heterogeneous Graph Convolutional Network (SHGCN
关键词: Graph embedding |  Graph neural network |  Zero-shot learning

3. Dissimilarity-Based Graph Embedding: An Efficient GAT-based Approach NSTL国家科技图书文献中心

Francesco Leonardi |  Kaspar Riesen -  《Pattern Recognition,Part X》 -  International Conference on Pattern Recognition - 2025, - 361~374 - 共14页

摘要:Graph embedding into vector spaces is a widely | . Several methods for graph embedding have been proposed |  Dissimilarity Based Graph Embedding (DBGE) for the first time |  used practice in graph-based pattern recognition to |  bypass the mathematical limitations of the graph domain
关键词: Graph embedding |  Graph edit distance |  Graph neural network

4. StrucGCN: Structural enhanced graph convolutional networks for graph embedding NSTL国家科技图书文献中心

Zhang, Jie |  Li, Mingxuan... -  《Information Fusion》 - 2025,117 - 共22页

摘要:In graph embedding, many popular Graph Neural |  efficient graph learning framework based on Graph |  Convolutional Networks (GCN), called structural enhanced graph |  the adjacency matrix across different graph datasets |  Networks (GNNs) rely on node features and the adjacency
关键词: Graph embedding |  Graph convolutional network |  Structural similarity |  Homophily

5. Improving Disease Comorbidity Prediction with Biologically Supervised Graph Embedding NSTL国家科技图书文献中心

Xihan Qin |  Li Liao -  《Computational Advances in Bio and Medical Sciences》 -  International Conference on Computational Advances in Bio and Medical Sciences - 2025, - 178~190 - 共13页

摘要: Graph Embedding (BSE) to select the most relevant |  features from the graph embedding for disease subgraphs | -Supervised-Graph-Embedding. |  and management. In graph machine learning, it is |  BSE's impact on both centered and uncentered embedding
关键词: Comorbidity |  Human interactome |  Graph embedding |  Supervised embedding |  Isomap

6. Federal Knowledge Graph Embedding Based on Incentive Mechanism NSTL国家科技图书文献中心

Lijun Chen |  Yudong Zhang... -  《Network and Parallel Computing,Part II》 -  IFIP WG 10.3 International Conference on Network and Parallel Computing - 2025, - 153~165 - 共13页

摘要: their data. Traditional knowledge graph embedding | Currently, the task of knowledge graph |  multi-source knowledge graph data while ensuring that |  embedding in multi-source knowledge graphs and introduces |  inference based on federated learning remains impractical
关键词: Knowledge graph embedding |  Federated learning |  Incentive mechanism

7. Decoupled semantic graph neural network for knowledge graph embedding NSTL国家科技图书文献中心

Li Z. |  Xiao K.... -  《Neurocomputing》 - 2025,611(Jan.1) - 1.1~1.11 - 共11页 - 被引量:1

摘要:© 2024 Elsevier B.V.Knowledge graph embedding |  (KGE) learns an embedding space for a more accurate |  semantic graph network for KGE (named DSGNet), which |  projecting the knowledge graph into distinct semantic |  representation of entities and relations. Although the KGE
关键词: Graph neural network |  Knowledge graph completion |  Knowledge graph embedding |  Knowledge graphs

8. Effective Knowledge Graph Embedding with Quaternion Convolutional Networks NSTL国家科技图书文献中心

Qiuyu Liang |  Weihua Wang... -  《Natural Language Processing and Chinese Computing,Part III》 -  CCF International Conference on Natural Language Processing and Chinese Computing - 2025, - 183~196 - 共14页

摘要: demonstrated effectiveness in knowledge graph embedding, but |  novel knowledge graph embedding model, which utilizes |  our model on multiple knowledge graph completion | Convolutional Neural Networks (CNNs) have |  existing CNN-based methods encounter two main challenges
关键词: Quaternion algebra |  Knowledge graph embedding |  Link prediction |  Convolutional neural network

9. C-KGE: Curriculum learning-based Knowledge Graph Embedding NSTL国家科技图书文献中心

Diange Zhou |  Shengwen Li... -  《Computer speech & language》 - 2025,89(Jan.) - 101689.1~101689.11 - 共11页

摘要:Knowledge graph embedding (KGE) aims to embed |  proposed model achieves improved embedding performances |  entities and relations in knowledge graphs (KGs) into a |  continuous, low-dimensional vector space. It has been shown |  as an effective tool for integrating knowledge
关键词: Knowledge graph embedding |  Knowledge graph |  Curriculum learning |  link prediction

10. A Knowledge Graph Embedding Model for Answering Factoid Entity Questions NSTL国家科技图书文献中心

PARASTOO JAFARZADEH |  FAEZEH ENSAN... -  《ACM transactions on information systems》 - 2025,43(2) - 38.1~38.27 - 共27页 - 被引量:1

摘要: article introduces the knowledge graph embedding model |  a knowledge graph embedding approach is utilized |  knowledge graph derived from extensive text collections |  from the textual knowledge graph based on semantic |  positioning the embedding for the answer entity close to the
关键词: Textual knowledge graph |  entity question answering |  knowledge graph embedding for question answering
检索条件Graph embedding
  • 检索词扩展

NSTL主题词

  • NSTL学科导航