全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Enhancing Stock Prediction ability through News Perspective and Deep Learning with attention mechanisms NSTL国家科技图书文献中心

Mei,Yang |  Fanjie,Fu... -  《Soft computing》 - 2025,29(1) - 117~126 - 共10页

摘要: study innovatively merges the capacity of attention |  mechanisms to focus crucial information with the ability of |  patterns, proposing a new algorithm named “Attention-TCN | ”. The results indicate that the Attention-TCN model |  utilizing a TCN model combined with an attention mechanism
关键词: Attention mechanisms |  News, stock prediction |  Deep learning |  Temporal convolutional network

2. Adversarial Robust Modulation Recognition Guided by Attention Mechanisms NSTL国家科技图书文献中心

Quanhai Zhan |  Xiongwei Zhang... -  《IEEE Open Journal of Signal Processing》 - 2025,6 - 17~29 - 共13页

摘要: order to address this issue, an Attention-Guided |  optimized attention mechanism within the Transformer |  filtered based on the weights of the attention module | Deep neural networks have demonstrated |  considerable effectiveness in recognizing complex
关键词: Modulation |  Training |  Feature extraction |  Computational modeling |  Accuracy |  Robustness |  Perturbation methods |  Transformers |  Attention mechanisms |  Deep learning

3. Combining residual convolutional LSTM with attention mechanisms for spatiotemporal forest cover prediction NSTL国家科技图书文献中心

Liu B. |  Chen S.... -  《Environmental modelling & software》 - 2025,183(Jan.) - 1.1~1.18 - 共18页 - 被引量:1

摘要: Short-Term Memory (ConvLSTM) networks, and attention |  mechanisms. We evaluated ResConvLSTM-Att against four deep | © 2024 The AuthorsUnderstanding spatiotemporal |  variations in forest cover is crucial for effective forest |  resource management. However, existing models often lack
关键词: Attention mechanisms |  Convolutional LSTM |  Forest cover prediction |  Residual connect |  Spatiotemporal

4. HybridCBAMNet: Enhancing time series binary classification with convolutional recurrent networks and attention mechanisms NSTL国家科技图书文献中心

Huang, Mei-Ling |  Yang, Yi-Ting -  《Measurement》 - 2025,241(Pt.2) - 115746.1~115746.16 - 共16页

摘要: recurrent networks and attention mechanisms for binary |  extract relevant features, alongside attention |  enhancement modules and convolutional block attention | The rapid advancement of Internet of Things |  technology and the increasing availability of big data have
关键词: Time series classification |  UCR dataset |  Convolutional recurrent networks |  Attention mechanisms |  Binary classification

5. Forecasting Trends in Cloud-Edge Computing: Unleashing the Power of Attention Mechanisms NSTL国家科技图书文献中心

Berend J. D. Gort |  Godfrey M. Kibalya... -  《IEEE Communications Magazine》 - 2025,63(1) - 108~114 - 共7页

摘要:, attention mechanisms have emerged thanks to their |  article pioneers the exploration of attention mechanisms | -complexity attention mechanism (i.e., informer model |  not only highlights the importance of attention |  mechanisms in cloud-edge scenarios, but also paves the way
关键词: Attention mechanisms |  Forecasting |  Transformers |  Computational modeling |  Predictive models |  Data models |  Computer architecture |  Accuracy |  Training |  Long short term memory...

6. Improving Vision-Language Models With Attention Mechanisms for Aerial Video Classification NSTL国家科技图书文献中心

Nguyen Anh Tu |  Nartay Aikyn -  《IEEE geoscience and remote sensing letters》 - 2025,22 - 1~5 - 共5页

摘要:-enriched transformer that employs self-attention |  mechanisms to adaptively refine visual and textual | Vision-language models (VLMs), particularly |  contrastive language-image pretraining (CLIP), have recently |  demonstrated great success across various vision tasks
关键词: Visualization |  Transformers |  Three-dimensional displays |  Semantics |  Feature extraction |  Encoding |  Spatiotemporal phenomena |  Bidirectional control |  Attention mechanisms |  Dynamics

7. Cutting path planning using reinforcement learning with adaptive sequence adjustment and attention mechanisms NSTL国家科技图书文献中心

Wang, Kaiqi |  Zhang, Shijin... -  《The International Journal of Advanced Manufacturing Technology》 - 2025,136(11/12) - 5599~5612 - 共14页

摘要: adjustment and attention mechanisms. Compared to | In industrial manufacturing, cutting path |  planning is very important since it directly affects |  cutting quality and efficiency. However, traditional |  methods are no longer suitable for large-scale and real
关键词: Cutting path planning |  Deep reinforcement learning |  Attention mechanisms |  Adaptive sequence adjustment

8. Enhanced YOLOv8 Integrated Brain-Inspired Attention Mechanisms for Weed Detection NSTL国家科技图书文献中心

Maosheng Wang |  Yuan Fang -  《Intelligent Robotics and Applications,Part IX》 -  International Conference on Intelligent Robotics and Applications - 2025, - 259~272 - 共14页

摘要: incorporation of attention mechanisms further improves its |  model incorporating brain-inspired attention |  mechanisms, in terms of weed detection. The comparison | This study explores the application of YOLOv8 |  in agricultural weed detection and compares the
关键词: Weed detection |  YOLO algorithm |  Brain-inspired model |  Attention mechanism |  Smart agriculture

9. Underwater Image Enhancement via Multiple Attention Mechanisms and Adversarial Learning NSTL国家科技图书文献中心

Juntao Gu |  Xiantao Jiang... -  《Sixteenth International Conference on Graphics and Image Processing (ICGIP 2024)》 -  International Conference on Graphics and Image Processing - 2025, - 135391O.1~135391O.12 - 共12页

摘要:. Furthermore, the model incorporates multiple attention |  mechanisms to mitigate information redundancy. Our | Due to the complex nature of the underwater |  environment, underwater images often suffer from degradation |  issues such as low contrast, blurring, and color
关键词: Underwater image enhancement |  Deep learning |  Convolution neural network |  Generative neural network

10. SNN using color-opponent and attention mechanisms for object recognition NSTL国家科技图书文献中心

Yao, Zhiwei |  Gao, Shaobing... -  《Pattern Recognition》 - 2025,158 - 共13页

摘要: from color-opponency mechanisms (COM) and classical |  attention mechanism to enhance differentiation among |  kernel computes attention, which is then applied via | The current spiking neural network (SNN | ) relies on spike-timing-dependent plasticity (STDP
关键词: Color-opponency |  Attention mechanism |  STDP |  SNN |  Unsupervised learning
检索条件Attention mechanisms
  • 检索词扩展

NSTL主题词

  • NSTL学科导航