全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Color fourier ptychographic microscopy reconstruction based on double contrast learning NSTL国家科技图书文献中心

Wang, Yan |  Wan, Shuo... -  《Physica Scripta》 - 2025,100(4) - 共10页

摘要: propose an enhanced dual-contrast learning virtual | Fourier ptychographic microscopy (FPM), as an |  advanced digital imaging technique, holds significant |  potential in the pathology field. Color FPM images are |  essential for accurate pathological analysis. Currently
关键词: FPM |  digital pathology |  double contrast learning |  virtual staining |  HWD downsampling module

2. Treasure in the background: Improve saliency object detection by self-supervised contrast learning NSTL国家科技图书文献中心

Haoji Dong |  Jie Wu... -  《Expert Systems with Application》 - 2025,267(Apr.1) - 126244.1~126244.11 - 共11页

摘要: details, we introduce self-supervised contrast learning |  contrast learning and pixel-level contrast learning for |  supervised learning tends to focus on prominent regions but |  self-supervised learning captures more comprehensive | Salient object detection (SOD) is a critical
关键词: Salient object detection |  Contrast learning |  Self-supervised learning |  Vision transformer |  Vision Graph Neural Network

3. Dynamic graph consistency and self-contrast learning for semi-supervised medical image segmentation NSTL国家科技图书文献中心

Li, Gang |  Xie, Jinjie... -  《Neural Networks》 - 2025,184 - Article 107063~Article 107063 - 共14页

摘要: novel self-contrast learning strategy, which performs |  engages in pixel-level contrast learning based on pixel |  contrast learning challenges related to identifying | Semi-supervised medical image segmentation |  endeavors to exploit a limited set of labeled data in
关键词: Semi-supervised learning |  Dynamic graph consistency |  Self-contrast learning |  Medical image segmentation

4. A novel spatio-temporal feature interleaved contrast learning neural network from a robustness perspective NSTL国家科技图书文献中心

Liu P. |  Zhu Y.... -  《Knowledge-based systems》 - 2025,309(Jan.30) - 1.1~1.13 - 共13页

摘要: contrast learning for daily traffic flow prediction.Our |  interlace contrast graph structure generator and a | © 2024 Elsevier B.V.Accurate traffic |  forecasting is critical to the effectiveness of intelligent |  transportation systems (ITS) and the development of smart
关键词: Complex networks |  Heterogeneity |  Robustness analysis |  Spatialtemporal data |  Traffic prediction

5. Self-supervised contrast learning based UAV fault detection and interpretation with spatial-temporal information of multivariate flight data NSTL国家科技图书文献中心

Shengdong Wang |  Zhen Jia... -  《Expert Systems with Application》 - 2025,267(Apr.1) - 126156.1~126156.20 - 共20页

摘要: contrast learning and spatial-temporal information of |  supervised learning strategy. In this study, a novel UAV |  multivariate flight data is proposed. In the contrast |  learning task, a series of specific sample |  transformations is further introduced to facilitate the learning
关键词: UAV |  Fault detection |  Flight data analysis |  Condition monitoring |  Graph neural network

6. A Federated Learning Framework for Lightweight Model Contrast for Finger Vein Recognition NSTL国家科技图书文献中心

Guang Chen |  Tianming Xie... -  《Biometric Recognition,Part I》 -  Chinese Conference on Biometric Recognition - 2025, - 68~78 - 共11页

摘要:. This study proposes a federal learning framework for | , a model of contrastive learning among participants | The training efficacy of finger vein models is |  influenced by varied device image acquisition |  characteristics, collector gestures, and contact modes. However
关键词: Federal learning |  Finger veins |  Contrast learning |  Training framework

7. Multilabel Classification of Intracranial Hemorrhages Using Deep Learning and Preprocessing Techniques on Non-contrast CT Images NSTL国家科技图书文献中心

Rodrigo Salas |  Juan Sebastian Castr...... -  《Progress in Pattern Recognition,Image Analysis,Computer Vision,and Applications,Part II》 -  Iberoamerican Congress on Pattern Recognition - 2025, - 175~190 - 共16页

摘要: that integrates a deep learning model with advanced | , subarachnoid, and subdural - using non-contrast computed |  dataset of over 25,000 non-contrast CT scans, each | This study presents a comprehensive framework |  image preprocessing techniques to improve the
关键词: Intracranial hemorrhage |  Deep learning |  Multilabel classification |  Non-contrast computed tomography (CT) |  Medical image processing

8. Artificial T1-Weighted Postcontrast Brain MRI A Deep Learning Method for Contrast Signal Extraction NSTL国家科技图书文献中心

Haase, Robert |  Pinetz, Thomas... -  《Investigative radiology.》 - 2025,60(2) - 105~113 - 共9页

摘要:Objectives: Reducing gadolinium-based contrast | -art deep learning methods (settings A and B) and a |  proposed method for contrast signal extraction (setting C |  scale (0 being the worst), they scored the contrast |  contrast signal extraction showed significant
关键词: gadolinium-based contrast agent |  low-dose |  dose reduction |  magnetic resonance imaging |  deep learning |  convolutional neural network |  virtual contrast

9. Masked Motion Prediction with Semantic Contrast for Point Cloud Sequence Learning NSTL国家科技图书文献中心

Yuehui Han |  Can Xu... -  《Computer Vision - ECCV 2024,Part LXXVI》 -  European Conference on Computer Vision - 2025, - 414~431 - 共18页

摘要:Self-supervised representation learning on |  designing frame-level contrastive learning. However, these |  masked motion prediction and semantic contrast (M2PSC | ) based self-supervised representation learning |  contrast, which can guide the model to better explore the
关键词: Self-Supervised learning |  Motion trajectory prediction |  Semantic contrast |  Point cloud sequences

10. Deep learning model based on contrast-enhanced ultrasound for predicting vessels encapsulating tumor clusters in hepatocellular carcinoma NSTL国家科技图书文献中心

Wenxin,Xu |  Haoyan,Zhang... -  《European radiology.》 - 2025,35(2) - 989~1000 - 共12页

摘要: a non-invasive deep learning (DL) model based on |  contrast-enhanced ultrasound (CEUS) to predict vessels |  This DL model based on contrast-enhanced US displayed |  contrast-enhanced DL model provides a non-invasive tool | -learning signature assisted in identifying patients with
关键词: Vessels encapsulating tumor clusters |  Contrast-enhanced ultrasound |  Deep learning |  Prediction
检索条件Contrast learning
  • 检索词扩展

NSTL主题词

  • NSTL学科导航