全部 |
  • 全部
  • 题名
  • 关键词
  • NSTL主题词
  • 摘要
  • 会议名称
  • 论文-出处
  • 论文-作者
  • 论文-机构
  • 论文-DOI
  • 会议-出版者
  • 会议-出版地
  • 会议-主编
  • 会议-主办单位
  • 会议-举办地
  • ISSN
  • EISSN
  • ISBN
  • EISBN
检索 搜索会议录 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Evolving Reservoirs for Meta Reinforcement Learning NSTL国家科技图书文献中心

Corentin Leger |  Gautier Hamon... -  《Applications of Evolutionary Computation: 27th European Conference, EvoApplications 2024, Held as Part of EvoStar 2024, Aberystwyth, UK, April 3-5, 2024, Proceedings, Part II》 -  European Conference on the Applications of Evolutionary Computation - 2024, - 36~60 - 共25页

摘要:Animals often demonstrate a remarkable ability |  to adapt to their environments during their |  lifetime. They do so partly due to the evolution of |  morphological and neural structures. These structures capture |  features of environments shared between generations to
关键词: Meta reinforcement learning |  Reservoir computing |  Evolutionary computation

2. Reinforcement Symbolic Learning NSTL国家科技图书文献中心

Chloe Mercier |  Frederic Alexandre... -  《Artificial Neural Networks and Machine Learning - ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14-17, 2021, Proceedings, p.IV》 -  International Conference on Artificial Neural Networks - 2021, - 608~612 - 共5页

摘要:Complex problem solving involves representing |  structured knowledge, reasoning and learning, all at once | . In this prospective study, we make explicit how a |  reinforcement learning paradigm can be applied to a symbolic |  representation of a concrete problem-solving task, modeled here
关键词: Reinforcement symbolic learning |  Ontology edit distances |  Models for learning sciences
NSTL主题词: Symbolic Learning |  Reinforcement
检索条件机构:Mnemosyne Team, Inria
  • 检索词扩展

NSTL主题词

  • NSTL学科导航