全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
展示更多
外文文献 中文文献
筛选条件:

1. Learning-Based Sub-image Retrieval in Historical Document Images NSTL国家科技图书文献中心

Joseph Assaker |  Stephane Nicolas... -  《Pattern Recognition,Part XIX》 -  International Conference on Pattern Recognition - 2025, - 137~151 - 共15页

摘要:The goal of this paper is to propose an |  unsupervised learning-based framework in order to deal with |  any kind of one-shot object detection scenario | , focusing on the tasks of sub-image retrieval and pattern |  spotting in historical document images. Taking in an
关键词: Sub-Image retrieval |  Pattern spotting |  Image retrieval |  One-Shot object detection |  Historical document images

2. Word-Diffusion: Diffusion-Based Handwritten Text Word Image Generation NSTL国家科技图书文献中心

Aniket Gurav |  Narayanan C. Krishna...... -  《Pattern Recognition,Part XIX》 -  International Conference on Pattern Recognition - 2025, - 53~72 - 共20页

摘要:Generating realistic handwritten word images |  that closely resemble a target style remains a |  challenging task in document image analysis. In recent years | , deep learning techniques, such as Latent Diffusion |  Models (LDM), have shown promise in generating styled
关键词: Denoising diffusion probabilistic model |  Handwritten text recognition |  Synthetic handwritten data

3. Enhancing Authorship Attribution Through Embedding Fusion: A Novel Approach with Masked and Encoder-Decoder Language Models NSTL国家科技图书文献中心

Arjun Ramesh Kaushik |  R. P. Sunil Rufus... -  《Pattern Recognition,Part XIX》 -  International Conference on Pattern Recognition - 2025, - 460~471 - 共12页

摘要:The increasing prevalence of AI-generated |  content alongside human-written text underscores the |  need for reliable discrimination methods. To address |  this challenge, we propose a novel framework with |  textual embeddings from Pre-trained Language Models
关键词: Authorship attribution |  Large language models |  Generative AI

4. LTNER: Large Language Model Tagging for Named Entity Recognition with Contextualized Entity Marking NSTL国家科技图书文献中心

Faren Yan |  Peng Yu... -  《Pattern Recognition,Part XIX》 -  International Conference on Pattern Recognition - 2025, - 399~411 - 共13页

摘要:The use of LLMs for natural language |  processing has become a popular trend in the past two years | , driven by their formidable capacity for context |  comprehension and learning, which has inspired a wave of |  research from academics and industry professionals
关键词: Natural language processing |  Named entity recognition |  Large language models |  Prompt engineering

5. Font Style Translation in Scene Text Images with CLIPstyler NSTL国家科技图书文献中心

Honghui Yuan |  Keiji Yanai -  《Pattern Recognition,Part XIX》 -  International Conference on Pattern Recognition - 2025, - 105~121 - 共17页

摘要:Scene text editing is widely used in various |  fields, such as poster design and correcting spelling |  mistakes in the image. Editing text in images is a |  challenging task that requires accurately and naturally |  integrating text within complex backgrounds. Existing
关键词: Image style transfer |  Font translation |  Scene text images |  Arbitrary style |  CLIPstyler

6. VisEmoComic: Visual Emotion Recognition in Comics Image NSTL国家科技图书文献中心

Ruddy Theodose |  Jean-Christophe Buri... -  《Pattern Recognition,Part XIX》 -  International Conference on Pattern Recognition - 2025, - 281~296 - 共16页

摘要:Emotion recognition in images have bean widely |  studied on captured data of real people but few works |  have been realized on drawn data. Among this category | , comic books have become an important part of the of |  the popular culture. Whether realistic drawings or
关键词: Emotion recognition |  Manga |  Comics analysis |  Document analysis

7. LineTR: Unified Text Line Segmentation for Challenging Palm Leaf Manuscripts NSTL国家科技图书文献中心

Vaibhav Agrawal |  Niharika Vadlamudi... -  《Pattern Recognition,Part XIX》 -  International Conference on Pattern Recognition - 2025, - 217~233 - 共17页

摘要:The dense and unstructured text in historical |  manuscripts presents significant challenges for precise line |  segmentation due to large diversity in sizes, scripts and |  appearances of the documents. Existing approaches tackle |  this complexity either by performing dataset-specific
关键词: Text line segmentation |  Historical manuscripts |  Deep learning |  Zero-Shot |  Transformers

8. Facet-Aware Multimodal Summarization via Cross-Modal Alignment NSTL国家科技图书文献中心

Yu Weng |  Xuming Ye... -  《Pattern Recognition,Part XIX》 -  International Conference on Pattern Recognition - 2025, - 37~52 - 共16页

摘要:Multimodal generative models have demonstrated |  promising capabilities for bridging the semantic gap |  between visual and textual modalities, especially in the |  context of multimodal summarization. Most of the |  existing methods align the visual and textual information
关键词: Multimedia analysis |  Document understanding |  Semantic technology |  Summarization

9. Enhancing Bengali Text-to-Speech Synthesis Through Transformer-Driven Text Normalization NSTL国家科技图书文献中心

Krishnendu Ghosh |  Munmun Patra... -  《Pattern Recognition,Part XIX》 -  International Conference on Pattern Recognition - 2025, - 429~444 - 共16页

摘要:This paper presents a transformer-driven |  approach for nonstandard word (NSW) normalization in |  Bengali text-to-speech synthesis (TTS) systems. Our text |  normalization (TN) approach is realized over three modules | : pre-processing, NSW classification, and token-to
关键词: Text-to-speech synthesis |  Bengali |  Text normalization |  Transformer |  Non-standard words

10. Visual Question Answering with Cascade of Self- and Co-Attention Blocks NSTL国家科技图书文献中心

Aakansha Mishra |  Ashish Anand... -  《Pattern Recognition,Part XIX》 -  International Conference on Pattern Recognition - 2025, - 20~36 - 共17页

摘要:Recent advancements in Visual Question |  Answering (VQA) have been driven by the integration of |  complex attention mechanisms. This work introduces a |  novel approach aimed at enhancing multi-modal |  representations through dense interactions between visual and
关键词: VQA |  Attention |  Self-Attention |  Co-attention |  Multi-modal fusion |  Classification networks
检索条件出处:Pattern Recognition,Part XIX

NSTL主题词

  • NSTL学科导航