全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
展示更多
外文文献 中文文献
筛选条件:

1. Enhancing Recipe Retrieval with Foundation Models: A Data Augmentation Perspective NSTL国家科技图书文献中心

Fangzhou Song |  Bin Zhu... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 111~127 - 共17页

摘要:Learning recipe and food image representation |  in common embedding space is non-trivial but |  crucial for cross-modal recipe retrieval. In this paper | , we propose a new perspective for this problem by |  utilizing foundation models for data augmentation
关键词: Recipe retrieval |  Data augmentation |  Foundation models

2. SCOMatch: Alleviating Overtrusting in Open-Set Semi-supervised Learning NSTL国家科技图书文献中心

Zerun Wang |  Liuyu Xiang... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 217~233 - 共17页

摘要:Open-set semi-supervised learning (OSSL | ) leverages practical open-set unlabeled data, comprising |  both in-distribution (ID) samples from seen classes |  and out-of-distribution (OOD) samples from unseen |  classes, for semi-supervised learning (SSL). Prior OSSL
关键词: Open-set problem |  Semi-supervised learning

3. On the Approximation Risk of Few-Shot Class-Incremental Learning NSTL国家科技图书文献中心

Xuan Wang |  Zhong Ji... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 162~178 - 共17页

摘要:Few-Shot Class-Incremental Learning (FSCIL | ) aims to learn new concepts with few training samples |  while preserving previously acquired knowledge | . Although promising performance has been achieved, there |  remains an underexplored aspect regarding the basic
关键词: Few-Shot class-Incremental learning |  Few-Shot learning |  Class incremental learning |  Approximation risk

4. StructLDM: Structured Latent Diffusion for 3D Human Generation NSTL国家科技图书文献中心

Tao Hu |  Fangzhou Hong... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 363~381 - 共19页

摘要:Recent 3D human generative models have |  achieved remarkable progress by learning 3D-aware GANs |  from 2D images. However, existing 3D human generative |  methods model humans in a compact 1D latent space | , ignoring the articulated structure and semantics of human
关键词: 3D human generation |  Latent diffusion model

5. Diffusion Models as Optimizers for Efficient Planning in Offline RL NSTL国家科技图书文献中心

Renming Huang |  Yunqiang Pei... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 1~17 - 共17页

摘要:Diffusion models have shown strong |  competitiveness in offline reinforcement learning tasks by |  formulating decision-making as sequential generation | . However, the practicality of these methods is limited |  due to the lengthy inference processes they require
关键词: Reinforcement learning |  Efficient planning |  Diffusion model

6. INSTASTYLE: Inversion Noise of a Stylized Image is Secretly a Style Adviser NSTL国家科技图书文献中心

Xing Cui |  Zekun Li... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 455~472 - 共18页

摘要:Stylized text-to-image generation focuses on |  creating images from textual descriptions while adhering |  to a style specified by reference images. However | , subtle style variations within different reference |  images can hinder the model from accurately learning
关键词: Stylized image generation |  Inversion noise |  Signal-to-noise ratio |  Prompt refinement

7. Long-CLIP: Unlocking the Long-Text Capability of CLIP NSTL国家科技图书文献中心

Beichen Zhang |  Pan Zhang... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 310~325 - 共16页

摘要:Contrastive Language-Image Pre-training (CLIP | ) has been the cornerstone for zero-shot |  classification, text-image retrieval, and text-image generation |  by aligning image and text modalities. Despite its |  widespread adoption, a significant limitation of CLIP lies
关键词: Multimodality |  Zero-shot image classification |  Text-Image retrieval |  Text-to-Image generation

8. PapMOT: Exploring Adversarial Patch Attack Against Multiple Object Tracking NSTL国家科技图书文献中心

Jiahuan Long |  Tingsong Jiang... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 128~144 - 共17页

摘要:Tracking multiple objects in a continuous |  video stream is crucial for many computer vision tasks | . It involves detecting and associating objects with |  their respective identities across successive frames | . Despite significant progress made in multiple object
关键词: Physical adversarial patches |  Multiple object tracking |  Evaluation metrics

9. How Many Are in This Image A Safety Evaluation Benchmark for Vision LLMs NSTL国家科技图书文献中心

Haoqin Tu |  Chenhang Cui... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 37~55 - 共19页

摘要:This work focuses on benchmarking the |  capabilities of vision large language models (VLLMs) in |  visual reasoning. Different from prior studies, we |  shift our focus from evaluating standard performance |  to introducing a comprehensive safety evaluation
关键词: Vision language |  Out-of-Distribution |  Adversarial attack |  Multimodal benchmark

10. Region-A ware Distribution Contrast: A Novel Approach to Multi-task Partially Supervised Learning NSTL国家科技图书文献中心

Meixuan Li |  Tianyu Li... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 234~251 - 共18页

摘要:In this study, we address the intricate |  challenge of multi-task dense prediction, encompassing |  tasks such as semantic segmentation, depth estimation | , and surface normal estimation, particularly when |  dealing with partially annotated data (MTPSL). The
关键词: Multi-task learning |  Partially supervised learning |  Scene understanding |  Contrastive learning
检索条件出处:Computer Vision - ECCV 2024,Part LI

NSTL主题词

  • NSTL学科导航