全部 |
  • 全部
  • 题名
  • 关键词
  • NSTL主题词
  • 摘要
  • 会议名称
  • 论文-出处
  • 论文-作者
  • 论文-机构
  • 论文-DOI
  • 会议-出版者
  • 会议-出版地
  • 会议-主编
  • 会议-主办单位
  • 会议-举办地
  • ISSN
  • EISSN
  • ISBN
  • EISBN
检索 搜索会议录 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. FedTC: Enabling Communication-Efficient Federated Learning via Transform Coding NSTL国家科技图书文献中心

Yixuan Guan |  Xuefeng Liu... -  《IEEE INFOCOM 2024 - IEEE Conference on Computer Communications, Vol.2: Vancouver, British Columbia, Canada.20-23 May 2024》 -  IEEE Conference on Computer Communications - 2024, - 821~830 - 共10页

摘要:Federated learning (FL) enables distributed training via periodically synchronizing model updates among participants. Communication overhead becomes a dominant constraint of FL since participating cli...
关键词: Federated Learning |  Communication Overhead |  Gradient Compression |  Transform Coding

2. FedMDC: Enabling Communication-Efficient Federated Learning over Packet Lossy Networks via Multiple Description Coding NSTL国家科技图书文献中心

Yixuan Guan |  Xuefeng Liu... -  《2024 IEEE International Conference on Multimedia and Expo》 -  IEEE International Conference on Multimedia and Expo - 2024, - 1~7 - 共7页

摘要:Federated learning (FL) generally suffers significant communication overhead from high-traffic gradient synchronization. The majority of existing studies on this problem aim at compressing gradients u...
关键词: Quantization (signal) |  Federated learning |  Distortion |  Propagation losses |  Encoding |  Decoding |  Reliability |  Synchronization |  Resource management |  Resilience

3. Enabling Communication-Efficient Federated Learning via Distributed Compressed Sensing NSTL国家科技图书文献中心

Yixuan Guan |  Xuefeng Liu... -  《IEEE INFOCOM 2023 - IEEE Conference on Computer Communications: New York City, New York, USA, 17-20 May 2023, [v.1]》 -  IEEE Conference on Computer Communications - 2023, - 261~270 - 共10页

摘要:Federated learning (FL) trains a shared global model by periodically aggregating gradients from local devices. Communication overhead becomes a principal bottleneck in FL since participating devices u...
关键词: Federated Learning |  Communication Overhead |  Gradient Compression |  Distributed Compressed Sensing
检索条件作者:Yixuan Guan

NSTL主题词

  • NSTL学科导航