全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. TRAIN LONG AND TEST LONG: LEVERAGING FULL DOCUMENT CONTEXTS IN SPEECH PROCESSING NSTL国家科技图书文献中心

William Chen |  Takatomo Kano... -  《ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024), Vol.17: Seoul, South Korea.14-19 April 2024》 -  IEEE International Conference on Acoustics, Speech and Signal Processing - 2024, - 13066~13070 - 共5页

摘要:The quadratic memory complexity of self-attention has generally restricted Transformer-based models to utterance-based speech processing, preventing models from leveraging long-form contexts. A common...
关键词: Long-form ASR |  Speech Summarization |  Speech Translation |  Self-supervised Learning

2. SPEECH SUMMARIZATION OF LONG SPOKEN DOCUMENT: IMPROVING MEMORY EFFICIENCY OF SPEECH/TEXT ENCODERS NSTL国家科技图书文献中心

Takatomo Kano |  Atsunori Ogawa... -  《2023 IEEE International Conference on Acoustics, Speech and Signal Processing: ICASSP 2023, Rhodes Island, Greece, 4-10 June 2023, [v.7]》 -  IEEE International Conference on Acoustics, Speech and Signal Processing - 2023, - 5521~5525 - 共5页

摘要:Speech summarization requires processing several minute-long speech sequences to allow exploiting the whole context of a spoken document. A conventional approach is a cascade of automatic speech recog...
关键词: end-to-end modeling |  long spoken document |  memory efficient encoders |  dual speech/text encoder

3. Summarize While Translating: Universal Model With Parallel Decoding for Summarization and Translation NSTL国家科技图书文献中心

Takatomo Kano |  Atsunori Ogawa... -  《2023 IEEE Automatic Speech Recognition and Understanding Workshop: IEEE Automatic Speech Recognition and Understanding Workshop (ASRU 2023), 16-20 Dec. 2023, Taipei, Taiwan》 -  IEEE Automatic Speech Recognition and Understanding Workshop - 2023, - 1~8 - 共8页

摘要:Recently, multi-decoder and universal models have attracted increased interest in speech and language processing as they allow learning common representations across tasks. These models learn a common...
关键词: Training |  Conferences |  Performance gain |  Multitasking |  Decoding |  Task analysis |  Speech processing

8. Transformer-Based Direct Speech-To-Speech Translation with Transcoder NSTL国家科技图书文献中心

Takatomo Kano |  Sakriani Sakti... -  《2021 IEEE Spoken Language Technology Workshop: IEEE Spoken Language Technology Workshop (SLT), 19-22 Jan. 2021, Shenzhen, China》 -  Spoken Language Technology Workshop - 2021, - 958~965 - 共8页

摘要:Traditional speech translation systems use a cascade manner that concatenates speech recognition (ASR), machine translation (MT), and text-to-speech (TTS) synthesis to translate speech from one langua...
关键词: Recurrent neural networks |  Speech recognition |  Syntactics |  Predictive models |  Machine translation |  Task analysis |  Spectrogram
NSTL主题词: transcoders |  Mentoring

10. Attention-Based Multi-Hypothesis Fusion for Speech Summarization NSTL国家科技图书文献中心

Takatomo Kano |  Atsunori Ogawa... -  《2021 IEEE Automatic Speech Recognition and Understanding Workshop: IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 13-17 Dec. 2021, Cartagena, Colombia》 -  IEEE Automatic Speech Recognition and Understanding Workshop - 2021, - 487~494 - 共8页

摘要:Speech summarization, which generates a text summary from speech, can be achieved by combining automatic speech recognition (ASR) and text summarization (TS). With this cascade approach, we can exploi...
关键词: Training |  Conferences |  Bit error rate |  Transformers |  Task analysis |  Automatic speech recognition
NSTL主题词: Speech |  FUSION
检索条件作者:Takatomo Kano
  • 检索词扩展

NSTL主题词

  • NSTL学科导航