全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Partial Multilabel Learning Using Noise-Tolerant Broad Learning System With Label Enhancement and Dimensionality Reduction NSTL国家科技图书文献中心

Wenbin Qian |  Yanqiang Tu... -  《IEEE transactions on neural networks and learning systems》 - 2025,36(2) - 3758~3772 - 共15页

摘要:Partial multilabel learning (PML) addresses the issue of noisy supervision, which contains an overcomplete set of candidate labels for each instance with only a valid subset of training data. Using la...
关键词: Noise measurement |  Learning systems |  Dimensionality reduction |  Correlation |  Sparse matrices |  Redundancy |  Kernel

2. Label Disambiguation-Based Feature Selection for Partial Multi-label Learning NSTL国家科技图书文献中心

Fankang Xu |  Wenbin Qian... -  《Pattern Recognition,Part VII》 -  International Conference on Pattern Recognition - 2025, - 265~279 - 共15页

摘要:Partial multi-label learning (PML) addresses the issue of training a multi-label predictor in the context of inaccurate supervision. Objects in PML are relevant to multiple semantics, but only a subse...
关键词: Feature selection |  Partial multi-label learning |  Granular ball

3. Multiple reference points-basedmulti-objective feature selection for multi-label learning NSTL国家科技图书文献中心

Yangtao Chen |  Wenbin Qian -  《Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies》 - 2024,54(6) - 4952~4978 - 共27页

摘要:In the real world, data often exhibits high-dimensional and complex characteristics. In addition, an object may correspond to multiple class labels. Therefore, filtering and processing such data has b...
关键词: Feature selection |  Multi-label learning |  Multi-objective optimization |  Multiple reference points |  Evolutionary algorithm

4. Label distribution feature selection based on label-specific features NSTL国家科技图书文献中心

Wenhao Shu |  Qiang Xia... -  《Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies》 - 2024,54(19) - 9195~9212 - 共18页

摘要:Label distribution learning, where deal with label ambiguity by describing the degree of relevance of each label to a specific instance. As a novel machine learning paradigm, the curse of dimensionali...
关键词: Feature selection |  Label-specific features |  Feature relevance |  Mutual information |  Label distribution learning

5. Neighborhood multigranulation rough sets for cost-sensitive feature selection on hybrid data NSTL国家科技图书文献中心

Wenhao Shu |  Qiang Xia... -  《Neurocomputing》 - 2024,565(Jan.14) - 126990.1~126990.15 - 共15页 - 被引量:1

摘要:Feature selection is a vital preprocessing step in real applications of data mining and machine learning. With the prevalence of high-dimensional hybrid data sets in real-world scenarios, along with t...
关键词: Feature selection |  Rough sets |  Hybrid data |  Multi-granulation |  Neighborhood |  Cost-sensitive learning

6. Incremental feature selection based on uncertainty measure for dynamic interval-valued data NSTL国家科技图书文献中心

Wenhao Shu |  Ting Chen... -  《International journal of machine learning and cybernetics》 - 2024,15(4) - 1453~1472 - 共20页

摘要:Abstract Feature selection is an important strategy for knowledge reduction in rough set. Interval-valued data, as an extension of single values, can better express uncertain information from the pers...
关键词: Feature selection |  Rough sets |  Interval-valued data |  Incremental algorithm |  Conditional entropy

7. Multi-label feature selection for missing labels by granular-ball based mutual information NSTL国家科技图书文献中心

Wenhao Shu |  Yichen Hu... -  《Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies》 - 2024,54(23) - 12589~12612 - 共24页

摘要:Multi-label feature selection serves an effective dimensionality reduction technique in the high-dimensional multi-label data. However, most feature selectionmethods regard the label as complete. In f...
关键词: Feature selection |  Multi-label learning |  Neighborhood rough set |  Granular-ball |  Missing label

8. Semi-supervised feature selection based on discernibility matrix and mutual information NSTL国家科技图书文献中心

Wenbin Qian |  Lijuan Wan... -  《Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies》 - 2024,54(13/14) - 7278~7295 - 共18页

摘要:Feature selection is a vital technique for reducing data dimensionality. While many granular computing-based feature selection algorithms have been proposed, most have been regarded as a supervised le...
关键词: Feature selection |  Rough sets |  Granular computing |  Indiscernibility measure |  Mutual information

9. Neighborhood relation-based incremental label propagation algorithm for partially labeled hybrid data NSTL国家科技图书文献中心

Wenhao Shu |  Dongtao Cao... -  《Machine learning》 - 2024,113(9) - 6293~6339 - 共47页

摘要:Label propagation can rapidly predict the labels of unlabeled objects as the correct answers from a small amount of given label information, which can enhance the performance of subsequent machine lea...
关键词: Partially labeled hybrid data |  Neighborhood relation |  Probabilistic transition matrix |  Incremental label propagation

10. Multi-label feature selection via spectral clustering-based label enhancement and manifold distribution consistency NSTL国家科技图书文献中心

Wenhao Shu |  Dongtao Cao... -  《International journal of machine learning and cybernetics》 - 2024,15(10) - 4669~4693 - 共25页

摘要:Abstract Multi-label feature selection can effectively improve the performance and efficiency of subsequent learning tasks by selecting important features within multi-label data. However, for handlin...
关键词: Multi-label feature selection |  Spectral clustering |  Label distribution |  Manifold learning
检索条件作者:Wenbin Qian

NSTL主题词

  • NSTL学科导航