全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
展示更多
外文文献 中文文献
筛选条件:

1. Noise-Robust Conformal Prediction for Medical Image Classification NSTL国家科技图书文献中心

Coby Penso |  Jacob Goldberger -  《Machine Learning in Medical Imaging,Part II》 -  International Workshop on Machine Learning in Medical Imaging |  International Conference on Medical Image Computing and Computer-Assisted Intervention - 2025, - 159~168 - 共10页

摘要:Conformal Prediction (CP) quantifies network uncertainty by building a small prediction set with a pre-defined probability that the correct class is within this set. In this study we tackle the proble...
关键词: Prediction set |  Conformal prediction |  Label noise |  Conformal score

2. De-confusing Pseudo-labels in Source-Free Domain Adaptation NSTL国家科技图书文献中心

Idit Diamant |  Amir Rosenfeld... -  《Computer Vision - ECCV 2024,Part LXXIX》 -  European Conference on Computer Vision - 2025, - 108~125 - 共18页

摘要:Source-free domain adaptation aims to adapt a source-trained model to an unlabeled target domain without access to the source data. It has attracted growing attention in recent years, where existing a...
关键词: Source-free domain adaptation |  Noise learning

3. A Joint Training and Confidence Calibration Procedure That is Robust to Label Noise NSTL国家科技图书文献中心

Coby Penso |  Jacob Goldberger -  《2024 IEEE International Symposium on Biomedical Imaging》 -  IEEE International Symposium on Biomedical Imaging - 2024, - 1~5 - 共5页

摘要:Manually annotated medical imaging data tend to have unreliable labels due to the complexity of the medical data and the considerable variability across experts. Noisy data can pose a significant chal...
关键词: Training |  Computational modeling |  Noise |  Predictive models |  Data models |  Calibration |  Noise robustness

4. A Conformalized Learning of a Prediction Set with Applications to Medical Imaging Classification NSTL国家科技图书文献中心

Roy Hirsch |  Jacob Goldberger -  《2024 IEEE International Symposium on Biomedical Imaging》 -  IEEE International Symposium on Biomedical Imaging - 2024, - 1~5 - 共5页

摘要:Medical imaging classifiers can achieve high predictive accuracy, but quantifying their uncertainty remains an unresolved challenge, which prevents their deployment in medical clinics. We present an a...
关键词: Uncertainty |  Accuracy |  Prediction algorithms |  Classification algorithms |  Medical diagnosis |  Task analysis |  Medical diagnostic imaging

5. PLST: A Pseudo-labels with a Smooth Transition Strategy for Medical Site Adaptation NSTL国家科技图书文献中心

Tomer Bar Natan |  Hayit Greenspan... -  《Domain Adaptation and Representation Transfer: 5th MICCAI Workshop, DART 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, Proceedings》 -  MICCAI Workshop on Domain Adaptation and Representation Transfer - 2024, - 31~40 - 共10页

摘要:This study addresses the challenge of medical image segmentation when transferring a pre-trained model from one medical site to another without access to pre-existing labels. The method involves utili...
关键词: Domain shift |  Domain adaptation |  Self-training |  Pseudo-labels

6. Confidence Calibration of a Medical Imaging Classification System That is Robust to Label Noise NSTL国家科技图书文献中心

Coby Penso |  Lior Frenkel... -  《IEEE Transactions on Medical Imaging》 - 2024,43(6) - 2050~2060 - 共11页

摘要:A classification model is calibrated if its predicted probabilities of outcomes reflect their accuracy. Calibrating neural networks is critical in medical analysis applications where clinical decision...
关键词: Calibration |  Noise measurement |  Training |  Medical diagnostic imaging |  Predictive models |  Noise level |  Temperature distribution

7. Domain Adaptation Using Suitable Pseudo Labels for Speech Enhancement and Dereverberation NSTL国家科技图书文献中心

Lior Frenkel |  Shlomo E. Chazan... -  《IEEE/ACM transactions on audio, speech, and language processing》 - 2024,32 - 1226~1236 - 共11页

摘要:Speech enhancement and dereverberation approaches based on neural networks are designed to learn a transformation from noisy to clean speech using supervised learning. However, networks trained in thi...
关键词: Speech enhancement |  Noise measurement |  Training |  Task analysis |  Adaptation models |  Jacobian matrices |  Reverberation

8. Calibration of A Regression Network Based on the Predictive Variance with Applications to Medical Images NSTL国家科技图书文献中心

Lior Frenkel |  Jacob Goldberger -  《2023 IEEE 20th International Symposium on Biomedical Imaging: 20th IEEE International Symposium on Biomedical Imaging (ISBI), 18-21 April 2023, Cartagena, Colombia》 -  IEEE International Symposium on Biomedical Imaging - 2023, - 1~5 - 共5页

摘要:Calibrating regression neural networks is crucial in medical imaging applications where the decision-making depends on the predicted confidence. In this study we propose a calibration procedure for re...
关键词: Neural networks |  Decision making |  Network architecture |  Calibration |  Biomedical imaging

9. PLPP: A Pseudo Labeling Post-Processing Strategy for Unsupervised Domain Adaptation NSTL国家科技图书文献中心

Tomer Bar Natan |  Hayit Greenspan... -  《2023 IEEE 20th International Symposium on Biomedical Imaging: 20th IEEE International Symposium on Biomedical Imaging (ISBI), 18-21 April 2023, Cartagena, Colombia》 -  IEEE International Symposium on Biomedical Imaging - 2023, - 1~5 - 共5页

摘要:A well known problem in medical imaging is the ability to use an existing model learned on source data, in a new site. This is known as the domain shift problem. We propose a pseudo labels procedure, ...
关键词: Image segmentation |  Adaptation models |  Magnetic resonance imaging |  Semisupervised learning |  Data models |  Labeling |  Task analysis

10. Utilizing Perturbation of Atoms’ Positions for Equivariant Pre-Training in 3D Molecular Analysis NSTL国家科技图书文献中心

Tal Kiani |  Avi Caciularu... -  《2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing: MLSP 2023, Rome, Italy, 17-20 September 2023》 -  IEEE International Workshop on Machine Learning for Signal Processing - 2023, - 1~6 - 共6页

摘要:Over the past few years, a number of Graph Neural Network (GNN) architectures have been effectively employed for molecular analysis. However, generating annotated molecular data usually requires molec...
关键词: Three-dimensional displays |  Quantum chemistry |  Perturbation methods |  Conferences |  Machine learning |  Signal processing |  Graph neural networks
检索条件作者:Jacob Goldberger

NSTL主题词

  • NSTL学科导航